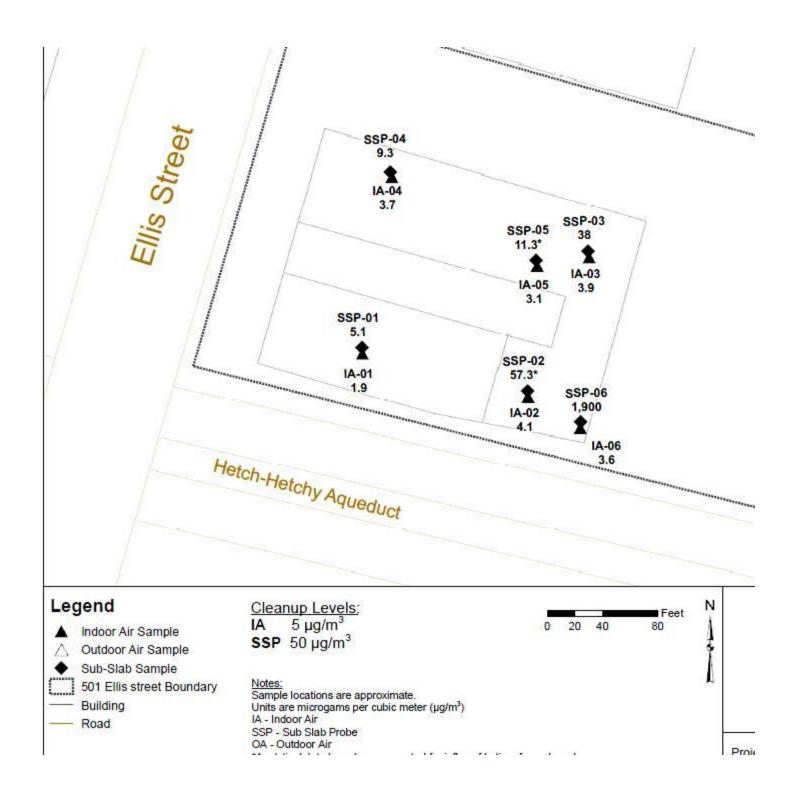
MORASH, MELANIE

From: Plate, Mathew


Sent: Wednesday, October 23, 2013 1:44 PM

To: MORASH, MELANIE

Subject: MEW NEC report - sub-slab data

Attachments: 501 Ellis St VI Assessment Report_2012 12 21.pdf

The original source area is near location 6. Note that the sub-slab concentration drop off significantly away from the source.

Prepared for

Renesas Electronics America, Inc. 2880 Scott Blvd, M/S SC3300 Santa Clara, CA 95050

RESULTS OF SUMMER 2012 INVESTIGATION OF POTENTIAL VAPOR INTRUSION PATHWAY AND RESPONSE ACTION WORK PLAN

501 ELLIS STREET MOUNTAIN VIEW, CALIFORNIA

Prepared by

engineers | scientists | innovators

1111 Broadway, 6th Floor Oakland, California 94607

Project Number: WR0434A

21 December 2012

Results of Summer 2012 Investigation of Potential Vapor Intrusion Pathway and Response Action Work Plan 501 Ellis Street Mountain View, California

Prepared by

Geosyntec Consultants, Inc. 1111 Broadway, 6th Floor Oakland, California 94607

Jacquelyn Lanzon, P.E.

Project Engineer

Eric Suchomel, P.E.

Project Engineer

Project Number: WR0434A 21 December 2012

Geosyntec consultants

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.1	Background of Renesas Submittal and Approval for Vapor Intrusion	
	Path	way Evaluation	1
	1.2	Report Organization	2
2.	PRO	DJECT DESCRIPTION	3
	2.1	Site Location	3
	2.2	Site Conditions	3
	2.3	Overview of Prior Air Sampling at the Site	4
3.	SUN	MMER 2012 INVESTIGATION	5
	3.1	Building Walkthrough	5
	3.2	Conduit and Crack Sealing	5
	3.3	Indoor and Outdoor Air Sampling	6
	3.4	Sub-Slab Soil Vapor Sampling	6
	3.5	Sample Analysis	9
4.	RES	SULTS	9
	4.1	Data Quality Review	9
	4.2	Indoor and Outdoor Air Sample Results	10
	4.3	Sub-Slab Soil Vapor Sample Results	11
5.	SIT	E TIERING AND RESPONSE ACTION RECOMMENDATIONS	12
	5.1	SVE System Design and Installation	13
	5.2	SVE System Monitoring	14
	5.3	Schedule	15
	5.4	Reporting	16

LIST OF TABLES

Table 1: Ambient Air Analytical Results

Table 2: Sub-Slab Soil Vapor Analytical Results

LIST OF FIGURES

Figure 1: Site Location Map

Figure 2: Sub-Slab and Indoor Air Sampling Locations

Figure 3: Indoor and Outdoor Air Sample Temperatures

Figure 4: Sub-Slab Probe

Figure 5: Sub-Slab and Indoor Air Trichloroethene Analytical Results

LIST OF APPENDICES

Appendix A: Building Walk Through Survey

Appendix B: Photo Log

Appendix C: Titebond Self-Leveling Concrete Joint Sealer MSDS

Appendix D: Soil Gas Probe Measurements

Appendix E: Air Toxics Laboratory Report

Appendix F: Soil Vapor Extraction System Construction Drawings

1. INTRODUCTION

This report describes and presents results of the Summer 2012 indoor and outdoor air and subslab soil vapor sampling at 501 Ellis Street in Mountain View, California (the "Site", Figure 1). Geosyntec Consultants, Inc. (Geosyntec) prepared this report on behalf of Renesas Electronics America, Inc. (Renesas), formerly NEC Electronics America, Inc. (NEC).

1.1 <u>Background of Renesas Submittal and Approval for Vapor Intrusion Pathway</u> <u>Evaluation</u>

The United States Environmental Protection Agency (EPA) issued its Record of Decision (ROD) Amendment for the Vapor Intrusion Pathway for the Middlefield-Ellis-Whisman (MEW) Superfund Study Area on 16 August 2010¹. Amendment 91-4A to the Administrative Order² directs the MEW parties to conduct vapor intrusion work activities in accordance with the Vapor Intrusion Remedial Design and Remedial Action Statement of Work (SOW)³. Among other things, the SOW defines a tiering system to determine vapor intrusion response actions for individual facilities within MEW and describes the vapor intrusion work activities to be performed.

Indoor and outdoor air samples were previously collected at the Site between 2003 and 2005 and the results have been reported to EPA⁴. However, the samples collected during that time were collected with the building HVAC system either operating or partially operating, and are not sufficient for determining a response action tier as defined in the SOW. Therefore, supplemental data were needed to select a response action tier for the building at 501 Ellis Street.

Pursuant to Section 2.2.2 of the SOW, Haley & Aldrich, Inc. prepared the Draft Site-Wide Vapor Intrusion Sampling and Analysis Work Plan for Response Action Tiering for the Middlefield-

¹ EPA Region IX, 2010. Record of Decision Amendment for the Vapor Intrusion Pathway, MEW Superfund Study Area, Mountain View and Moffett Field, CA. 16 August.

² EPA Region IX, 2011. Amendment 91-4A to Administrative Order, Docket Number 91-4, Remedial Design and Remedial Action of the MEW Site Vapor Intrusion Remedy. 16 September.

³ EPA, 2011. Statement of Work, Remedial Design and Remedial Action to Address the Vapor Intrusion Pathway, MEW Superfund Study Area, Mountain View and Moffett Field, CA. September. (included as Attachment 4 to the ROD Amendment)

⁴ Geosyntec, 2005. Results of December 2004 and January 2005 Indoor and Outdoor Air Sampling, 501 Ellis Street, Mountain View, California. 14 April.

Geosyntec^o

consultants

Ellis-Whisman (MEW) Superfund Area (Draft Tiering Work Plan)⁵, which was submitted to EPA on 29 September 2011. EPA is presently reviewing the Draft Tiering Work Plan.

In June 2012, Geosyntec learned that the building at 501 Ellis Street would be vacated and undergo renovation, which presented an opportunity to collect soil vapor and indoor air samples while the building was unoccupied and the building slab was exposed. Following discussion with the building owners and EPA representatives, Geosyntec prepared a work plan to evaluate the potential vapor intrusion pathway at 501 Ellis Street, consistent with the SOW and the Draft Tiering Work Plan⁶. The EPA conditionally approved the Work Plan on 20 July 2012, provided that Renesas collect one additional sub-slab soil vapor sample that was requested by EPA.

Geosyntec performed the field activities described in the Work Plan from 23 July through 5 August 2012. The main objective of the work was to evaluate the potential presence of a vapor intrusion pathway at the Site. Six sub-slab soil vapor probes (SSPs) were installed beneath the Site building slab and soil vapor samples were collected and analyzed for volatile organic compounds (VOCs) by EPA Method TO-15 with a project-specific analyte list including the constituents of concern (COCs) that have been identified at MEW. One ambient (outdoor) air (OA) and six indoor air (IA) samples were also collected and analyzed for the same suite of parameters. Indoor air samples were co-located with sub-slab samples. The results are discussed herein, and a plan for future work at the Site is also presented.

1.2 Report Organization

The remainder of this report is organized as follows:

- Section 2 Project Description, describes the Site location, current Site conditions, and the scope of the sampling program for the Site.
- Section 3 Summer 2012 Investigation, describes the investigation activities, sample locations, and procedures for sample collection and analysis.
- Section 4 Results, includes a data quality review, presentation of results, and comparison of the results to risk levels.
- Section 5 Recommended Response Actions, presents the scope, details, and schedule for recommended follow-up work.

501 Ellis St VI Assessment Report 2012 12 21.docx

⁵ Haley & Aldrich, 2011. Draft Site-Wide Vapor Intrusion Sampling and Analysis Work Plan for Response Action Tiering, Vapor Intrusion Study Area, Middlefield-Ellis-Whisman Superfund Area, Mountain View, California. 29 September.

⁶ Geosyntec, 2012. Final Work Plan to Evaluate the Potential Vapor Intrusion Pathway – 501 Ellis Street, Mountain View, California. 18 July.

Tables, figures, and appendices are presented following the report text.

2. PROJECT DESCRIPTION

2.1 <u>Site Location</u>

The Site is located at 501 Ellis Street in Mountain View, Santa Clara County, California (Figure 1). San Francisco Bay is approximately two miles to the north, and the Santa Cruz Mountains are approximately six miles to the south. The property is approximately 2 acres in size, consisting primarily of a building on the west and a paved open area on the east. The single-story building occupies about 28,000 ft² of the western portion of the property. The building was constructed in about 1967, with slab-on-grade construction and no basement.

The area bounded by Middlefield Road, Ellis Street, Whisman Road, and U.S. Highway 101 in Mountain View includes past and present locations of several semiconductor and other manufacturing and industrial facilities, including the subject Site. Since 1981, numerous previous investigations at the properties within MEW have been conducted and extensive soil and groundwater remedial activities have been implemented at many of those properties.

2.2 <u>Site Conditions</u>

From 1968 to 1978, Electronic Arrays Corporation used the Site to manufacture semiconductor devices and related components. Solvents and other chemicals were used in the manufacturing process. From 1978 until April 1984, NEC (now Renesas) operated at 501 Ellis Street.

In 1982, NEC initiated a groundwater monitoring and soil sampling program in response to the California Regional Water Quality Control Board (RWQCB) investigation of all companies using underground chemical tanks in their production processes before 1 January 1975. Between 1982 and 1990, NEC completed several site investigations which identified detectable concentrations of some VOCs, primarily trichloroethene (TCE), in the soil and groundwater beneath the site.

On 6 September 1991, NEC submitted to EPA a proposed final remedial design for VOCs in unsaturated soils located behind the building at 501 Ellis Street. Treatment technologies for shallow unsaturated soils at MEW are specified in the MEW ROD, issued by EPA in May 1989, and consist of removal and aeration or in-situ vapor extraction. NEC elected to excavate and send offsite for treatment, shallow soils with TCE concentrations greater than the cleanup level

Geosyntec^o

consultants

of 0.5 milligrams per kilogram (mg/kg). NEC received EPA approval of its soil investigations and remediation at the Site in 1995⁷.

In October 1997, NEC began operating the Source Control Groundwater Remediation (SCGWR) System at 501 Ellis Street. The SCGWR system consists of a groundwater extraction and treatment system that was designed to control, contain, and extract VOCs in groundwater at the Site and to complement the regional groundwater remediation program for the MEW area. The SCGWR system has been continuously operational since start-up in October 1997. On 13 May 2009, the modifications to the SCGWR system recommended in the 2008 Optimization Evaluation⁸ were completed. These modifications included ceasing extraction from one of the three extraction wells and converting the system from carbon treatment followed by discharge to Stevens Creek under an NPDES permit to direct discharge of untreated groundwater to the sanitary sewer for treatment at the Palo Alto RWQCP under a City of Mountain View wastewater discharge permit.

Since startup in 1997, the average daily processing rate of the SCGWR system has been approximately 6,580 gallons per day or 4.6 gallons per minute (gpm) from 3 extraction wells. Since system optimization in 2009, the average daily processing rate has been 3.8 gpm.

Approximately 1.85 pounds of VOCs were removed by the SCGWR system in 2011. The total mass of VOCs removed by the treatment system from start-up through 12 December 2011 is approximately 42.8 pounds.

Renault & Handley Employees Investment Co. (Renault & Handley) currently owns the Site. The building at 501 Ellis Street is currently vacant and undergoing renovation.

2.3 Overview of Prior Air Sampling at the Site

Indoor and outdoor air samples were collected at the Site four times from 2003 to 2005. Sampling events in Spring 2003, Fall 2003, Winter 2004, and Winter 2005 were conducted with the building HVAC system either operating or partially operating, and as such are not sufficient to determine a response action tier as defined in the ROD agreement. In advance of the Summer 2012 investigation, the Site's HVAC system, including air conditioning units and ventilation, was turned off and remained off throughout the sample collection. On 24 July 2012, a representative of the property management group confirmed that the HVAC system was not

501 Ellis St VI Assessment Report 2012 12 21.docx

⁷ EPA, 2009. Final Second Five-Year Review Report for Middlefield-Ellis-Whisman (MEW) Superfund Study Area, Mountain View, California. September.

⁸ Geosyntec Consultants, 2008. Optimization Evaluation, 501 Ellis Street, Source Control Groundwater Remediation System, Mountain View, California. 3 September.

Geosyntec D

operating. However, it is likely that the HVAC was turned off prior to that date, when the building was vacated.

3. SUMMER 2012 INVESTIGATION

3.1 <u>Building Walkthrough</u>

A building walkthrough was performed 23 July 2012 to identify and document potential indoor VOC sources and potential preferential pathways for VI (e.g., cracks in the slab or features such as piping or conduits that penetrate the slab). During the walkthrough, five paint cans on the countertop in the northwestern portion of the building were identified as the only potential indoor VOC source. The cans were left in place since they appeared to be well sealed, and since total VOCs were not detected in the vicinity of the cans when measured with a photoionization detector (PID). In addition, the following potential preferential pathways were identified:

- Floor drains were identified in the restrooms.
- A sewer cleanout was identified, located to the north of the restrooms along the dividing wall on the eastern side of the building. The cleanout was well sealed and is not considered to be a potential preferential pathway.
- A fire sprinkler test drain was identified in the server room.
- A number of minor cracks or holes in the slab were identified throughout the building.
- Gaps in the slab were observed at the fire water supply pipe in the northwestern part of the building.
- Two 4-inch diameter plastic pipes, originally intended to carry networking cables, were observed to penetrate the floor in the southeastern-most room at the Site.

Observations from the building walkthrough are summarized on the Commercial Building Survey, provided as Appendix A. Photographs of pertinent observations are included as part of the project photo log in Appendix B.

3.2 <u>Conduit and Crack Sealing</u>

On 25 and 26 July 2012, the potential preferential pathways identified during the building walkthrough were mitigated as follows:

Geosyntec D

consultants

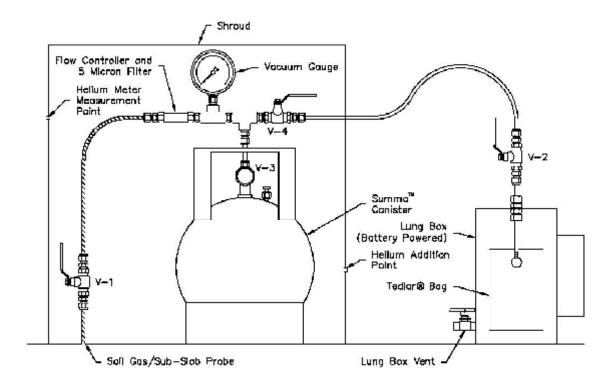
- The minor cracks and holes in the slab were sealed in place with Pro's Sealant Titebond Concrete Joint Sealant (material safety data sheet (MSDS) provided as Appendix C).
- The gaps in the slab at the fire water supply pipe in the northwestern part of the building were filled with RapidSet Very Rapid Hardening Concrete.
- The two plastic conduits in the southeastern-most room at the Site were capped in place. A plastic cap was screwed in to the existing thread on the end of the empty conduit. For the conduit with cables running through it, a fitting to narrow the opening was attached. Foam sealant (Dow's Great Stuff Insulating Foam Sealant, Big Gap Filler) was then applied liberally inside the fitting to fill the remaining gap.

Conduit and crack sealing was performed by American Integrated Services, Inc. (AIS) of Fairfield, California under the direction of Geosyntec. A photo log of pertinent observations is included in Appendix B.

3.3 Indoor and Outdoor Air Sampling

Indoor air (IA) and outdoor air (OA) samples were collected on 2 August 2012, prior to collecting the sub-slab soil vapor samples. Samples were collected using individually-certified 6-liter SummaTM canisters equipped with 5-micron filters and flow controllers calibrated to collect a 10-hour time integrated sample. The SummaTM canisters were placed 3 to 5 feet above the ground surface at locations which were adjacent to the corresponding SSP location, with the exception of sample IA-05. Sample IA-05 was collected from within the server room. The corresponding SSP-05 was located in the open area outside of the server room, in order to avoid damaging the tiled flooring during SSP installation. The outdoor sample was collected near the eastern property boundary. Indoor and outdoor air sample locations are shown on Figure 2. Temperature loggers were placed adjacent to each indoor air sample to record the temperature in the building. Another temperature logger was placed adjacent to the outdoor air sample to record outside temperature. The loggers collected temperature data every 5 seconds over the 10-hour sampling duration, as shown in Figure 3.

3.4 <u>Sub-Slab Soil Vapor Sampling</u>


A total of six temporary SSPs were installed at the Site on 30 July 2012 in order to evaluate potential transport routes for migration of subsurface vapors. The sub-slab probes were colocated with the indoor air sample locations, as presented in Figure 2. The SSP locations are also shown in the project photo log (Appendix B). EPA collected a pathway sample at the fire sprinkler test drain in the Server Room (PATH-FDRAIN) and split samples at locations SSP-01, SSP-03, SSP-05, and SSP-06. All EPA samples were analyzed at the EPA Region 9 laboratory.

During installation of the SSPs, core holes were drilled in the concrete floors using a heavy-duty electrical hammer-drill until the drill bit punctured the floor slab and entered the underlying granular fill materials. Drilling did not continue into the underlying geologic materials. A significant increase in the rate of the drill bit penetration or decrease in resistance signified when the bottom of each slab was punctured. Concrete dust generated during drilling was swept up during and after drilling. Upon completion of drilling, the sub-slab probe insert, which consists of a quarter-inch diameter brass threaded pipe fitted with a coupling and plug as shown in Figure 4, was installed and sealed promptly with swelling cement to minimize any potential air flow into or out of the drilled hole. Cement seals were allowed to set for four days before sampling.

After installation, a minimum of three liters of soil vapor were extracted from each probe to remove atmospheric air entrained during installation. Leak testing, purging, and sample collection were conducted as described below.

The soil vapor sampling equipment was assembled as shown in the schematic below. A Tedlar bag was attached to the tubing inside the lung box and the lid of the lung box was secured.

Soil Vapor Sampling Equipment Schematic.

Geosyntec^o

consultants

A shut-in test was conducted to assess the potential for leaks in the above-ground fittings of the sample train between valves V-1 and V-2 in the above schematic prior to field screening and sample collection. A vacuum of up to 100 inches of water column (in-H₂O) was applied to the lines, and valves at both ends were shut to seal the vacuum in the lines. The vacuum was observed over 1 minute, and any visible change in pressure resulted in tightening of the fittings and a repeat of the test. This information was recorded in sampling logs, which were prepared for each location. Sampling logs are included in Appendix D.

Field screening was conducted following shut-in testing to characterize field parameters prior to sample collection for laboratory analysis. A Tedlar bag was filled, using a lung box, through a 200 milliliter per minute (mL/min) flow controller to confirm stabilized readings before sample collection. Field screening was conducted using a GEM-2000 landfill gas meter to measure oxygen (O₂), carbon dioxide (CO₂) and methane (CH₄) and a miniRAE 2000 PID for total VOCs.

Helium was used as a tracer gas during purging to provide additional assurance that no significant amount of atmospheric air entered the soil vapor sample through the annular seal between the ground surface and probe or any associated fittings. A shroud was placed around the ground surface of each soil vapor probe and sampling apparatus prior to sample collection, as shown in the graphic above, and helium gas was added to the shroud during the purging and field screening process. The concentration of helium in the shroud and in the purged volumes was measured with a MGD-2002 Helium Detector. In accordance with the Draft Tiering Work Plan, if the concentration of helium in the Tedlar bag was greater than 10% of the concentration in the shroud, the probe seal and fittings were checked to determine the location of the leak. Once the leak was stopped, purging and field screening was resumed.

The helium tracer testing confirmed the absence of leaks greater than 10% of the volume of the sample in all but two canisters. For samples SSP-02 and SSP-05, the percentage of leakage was approximately 16% and 30%, respectively, and could not be further reduced despite repeated efforts to identify leaks. For these samples, a correction factor was calculated using mass balance principles and the measured helium concentrations in the sample and the minimum average concentration in the shroud. The results of laboratory analysis for these samples was multiplied by the correction factor and presented as both uncorrected and corrected values.

Soil vapor samples were collected using batch-certified, 1-Liter (1-L) SummaTM canisters with 5-micron filters and 200 mL/min flow controllers. For all SummaTM canisters, the initial vacuum was measured and recorded prior to use to document that the canister had not leaked during shipment. At the end of the sampling period, the final vacuum was measured and recorded on both the field forms and the laboratory identification label. Following sample collection, the SummaTM canisters were shipped to the laboratory under chain-of-custody control at ambient

Geosyntec D

temperature. Upon receipt of the canisters at the laboratory, the vacuum was measured again to ensure that the canister did not leak during shipment. No significant canisters leaks were identified during shipment to or from the Site.

3.5 <u>Sample Analysis</u>

Eurofins Air Toxics Ltd., of Folsom, California, an ELAP-certified laboratory, analyzed the indoor and outdoor air and sub-slab soil vapor samples for tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), vinyl chloride (VC), 1,1-dichloroethane (1-1-DCA), and 1,1-dichloroethene (1,1-DCE) using EPA Method TO-15/TO-15 SIM, and helium using ASTM D-1946. Vapor concentrations of these compounds are reported in micrograms per cubic meter ($\mu g/m^3$) and parts per billion by volume (ppbv).

4. RESULTS

The Air Toxics laboratory report for the Summer 2012 investigation is provided in Appendix E. Analytical results from the Summer 2012 investigation are summarized in Table 1 (indoor and outdoor air results) and Table 2 (sub-slab results). Figure 5 shows the Summer 2012 results for TCE at each sample location.

4.1 <u>Data Quality Review</u>

Geosyntec performed a Stage 2A data validation of the analytical data received from Air Toxics. Overall, based on this data validation which covers the quality control (QC) parameters listed below, the data as qualified are usable for meeting project objectives. Qualified data should be used within the limitations of the qualification.

The organic data were reviewed based on USEPA guidance⁹, the specifications of Appendix B of the Draft Tiering Work Plan, as well as by the pertinent methods referenced by the data package and professional judgment.

Overall Assessment. The VOC and helium data reported in this package are considered to
be usable for meeting project objectives. The results are considered to be valid; the
analytical completeness, defined as the ratio of the number of valid analytical results
(valid analytical results include values qualified as estimated) to the total number of
analytical results requested on samples submitted for analysis, for the project is 100%.

⁹ USEPA, 2008. Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. USEPA-540-R-08-01. June.

Geosyntec D

consultants

- <u>Holding Times.</u> The holding time for a vapor sample is 30 days from collection to analysis. The holding times were met for the sample analyses.
- Method Blanks. Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two method blanks were reported with the VOC data. VOCs were not detected in the method blanks above the method detection limits (MDLs) for TO-15 SIM analysis and the reporting limits (RL) for TO-15 full scan analysis. One method blank was reported with the Helium data; Helium was not detected in the method blank above the RL.
- Laboratory Duplicate. Laboratory duplicates were not reported.
- Laboratory Control Sample (LCS). LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Two LCS/LCS Duplicate (D) pairs were analyzed. The results for the LCS/LCSD pairs were within the laboratory specified acceptance criteria for recovery and relative percent difference (RPD).
- Surrogates. Acceptable surrogate recoveries were reported for the sample analyses.
- Sensitivity. The samples were reported to the MDLs. The RLs for VOCs met those specified by USEPA-540-R-08-01. A helium reporting limit was not specified by USEPA-540-R-08-01. Slight variations in the MDLs and RLs were reported with the data due to canister dilution
- Field Duplicate. Two field duplicate samples, IA-DUP-01 and SSP-DUP-01, were collected with the samples for VOCs. Acceptable precision (RPD less than 30%) was demonstrated between the field duplicate and the original samples, IA-03 and SSP-02 with the exception of duplicate pair SSP-02/SSP-DUP-01 for VOCs. One sample had an estimated detection and the other sample indicated a non-detect result, resulting in all of the associated results being estimated or estimated less than the MDL. For Helium, unacceptable precision (RPD less than 30%) was demonstrated between the field duplicate and the original sample, SSP-02; therefore, the results for Helium should be regarded as estimated.

4.2 Indoor and Outdoor Air Sample Results

Results of temperature logging graphed on Figure 3 indicate that the HVAC system was not operating during sample collection, which was also confirmed by a building ownership representative. All temperature graphs are characterized by significant swings between higher and lower temperatures throughout the day, with a slight delay in response between outdoor and indoor temperature.

Geosyntec^o

consultants

Indoor and outdoor air results were compared to site-specific Indoor Air Cleanup Levels (IACLs) (Haley & Aldrich, 2011). IACLs were not exceeded at any location.

The indoor and outdoor air results may be summarized as follows:

- TCE was detected in the outdoor air sample at a concentration of 1.1 μg/m³ and in all of the indoor air samples at concentrations ranging from 1.9 to 4.1 μg/m³.
- PCE was detected in the outdoor air sample at a concentration of 0.11 J μ g/m³ and in all of the indoor air samples at concentrations ranging from 0.074 J to 0.26 μ g/m³.
- 1,1-DCE was detected at IA-04 at a concentration of $0.050 \text{ J} \,\mu\text{g/m}^3$.
- Cis-1,2,-DCE was detected in the outdoor air sample at a concentration of 0.028 J $\mu g/m^3$ and in five of the indoor air samples at concentrations ranging from 0.012 J to 0.130 $\mu g/m^3$.
- Trans-1,2-DCE was detected in the outdoor sample at a concentration of 0.19 J $\mu g/m^3$ and in all of the indoor samples at concentrations ranging from 0.011 J to 0.03 J $\mu g/m^3$.
- 1,1-DCA and VC were not detected in any indoor air samples above their respective reporting limits.

4.3 Sub-Slab Soil Vapor Sample Results

Sub-slab soil vapor and fire sprinkler test drain results were compared to sub-slab screening levels developed based on indoor air screening levels and an attenuation factor of 0.1, per EPA guidance, and 0.05, per California Department of Toxic Substances Control (DTSC) guidance. 10,11

The sub-slab soil vapor and fire sprinkler test drain results may be summarized as follows:

- 1,1-DCA, 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride were not detected in any of the soil vapor samples collected by Geosyntec and the EPA.
- cis-1,2-DCE and trans-1,2-DCE were detected in the fire sprinkler test drain sample at concentrations of 30 µg/m³.

¹⁰ United States Environmental Protection Agency, 2012. Vapor Intrusion Screening Level Calculator User's Guide. March. Accessed 27 November 2012.

http://www.epa.gov/oswer/vaporintrusion/documents/VISL UsersGuide v1.0 Nov2011RSLs.pdf

¹¹ Department of Toxic Substances Control California Environmental Protection Agency, 2011. Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). October.

Geosyntec[>]

consultants

- PCE was detected in the soil vapor samples at concentrations ranging from 7.4 to 300 µg/m³. PCE concentration exceeded the sub-slab screening levels at location SSP-06.
- TCE was detected in soil vapor and floor drain samples at concentrations ranging from 5.0 to 1,900 μg/m³. TCE concentrations exceeded the screening levels at location SSP-06, and at the fire sprinkler test drain. TCE concentrations at SSP-02 slightly exceeded the EPA-based screening level (attenuation factor of 0.1), but did not exceed the DTSC-based screening level (attenuation factor of 0.05).

5. SITE TIERING AND RESPONSE ACTION RECOMMENDATIONS

Results from this sampling event categorize the building at 501 Ellis Street as Tier 3A at the present time (i.e., a building with indoor air concentrations below indoor air cleanup levels, but greater than outdoor concentrations). Although Tier 3A requires a response action of developing and implementing a long-term monitoring plan and implementing institutional controls (ICs), the following additional work is recommended, for the reasons provided below.

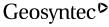
- Install and operate a temporary soil vapor extraction (SVE) system in an effort to reduce sub-slab soil vapor concentrations in the southeast corner of the building, near sub-slab soil vapor sample location SSP-6. Operation of a temporary SVE system may lead to a decrease in sub-slab soil vapor concentrations in this area. Installation and operation of the SVE system are described in more detail in Sections 5.2 through 5.3 of this report. Construction drawings are also provided as Appendix F.
- Install a lockable watertight expandable gasket plug in the fire sprinkler test drain in the server room to seal the drain. During indoor air sampling investigations conducted in 2003, the fire sprinkler test drain was identified as a potential vapor migration pathway¹². In January 2004, an expandable gasket plug was placed in the drain and a sign was chained to the drain discharge pipe stating that the plug should remain in the drain at all times, except when testing the fire sprinkler. Testing conducted after the plug was placed showed that the potential vapor migration pathway was successfully mitigated. During the summer 2012 sample event, EPA collected an unannounced pathway sample at the drain opening. The results showed TCE was detected at a concentration greater than the indoor air cleanup level (Table 2). Results for an indoor air sample collected nearby in the Server Room (IA-05) reported TCE was present below the indoor air cleanup level (Table 1). To mitigate potential vapor migration from the fire sprinkler test drain in the future, a new plug equipped with a lock will be placed in

-

¹² Geosyntec Consultants, 2004. Results Winter 2004 Indoor and Outdoor Air Sampling, 501 Ellis Street, Mountain View, California. 26 February.

Geosyntec D

consultants


the drain to prevent tampering. Building ownership representatives will be provided with a key or combination for the lock, which tenants will not have access to without permission.

5.1 **SVE System Design and Installation**

Renesas proposes to install a temporary SVE system in the southeast corner of the building, where elevated sub-slab vapor concentrations were observed at sample location SSP-06 (Appendix F, Sheet C-1). System components will include a 4-inch diameter shallow SVE well installed underneath the building to a depth of up to 6 feet below grade. The piping from the SVE well will extend to the south building wall in a floor trench, and will exit through the wall or beneath the building, where it will connect to the extraction system machinery via a 3-inch diameter pipeline (Appendix F, Sheet C-2). Extraction system machinery will include a liquid/vapor separator for removal of condensate/residual water, a blower for vapor extraction, and piping/instrumentation to control and monitor air flow (Appendix F, Sheet P-1). System equipment will be mounted on a 5 foot by 6 foot pallet, which may be placed at ground level or on the roof in accordance with preferences of the property management group. Since the total combined emissions predicted from operation of this SVE system is less than 1 pound per day (approximately 0.006 pounds per day), this SVE system will not require treatment of the extracted air with activated carbon. 13 Condensate/residual water removed by the liquid/vapor separator will be analyzed for VOCs and will be appropriately treated and/or disposed of via 1) discharge to the sanitary sewer in accordance with existing City of Mountain View Wastewater Discharge Permit #925; or 2) offsite via licensed waste handler. One vapor monitoring point will also be installed to a depth of up to 6 feet below grade to monitor subsurface VOC concentrations and SVE system vacuum (Appendix F, Sheet C-2, Detail 2). The vapor monitoring point will be connected to Nylaflow[®] tubing, which will run alongside the SVE well piping and terminate with a ball valve outside the building, such that samples may be collected from the outdoor SVE compound without entering the building.

Prior to construction, a Building Permit will be obtained from the City of Mountain View, and a Permit to Construct and Permit to Operate waiver will be obtained from the Bay Area Air Quality Management District (BAAQMD). The SVE system will be installed according to the 2010 California Building Code with Mountain View City Code amendments.

¹³ Bay Area Air Quality Management District, 2005. Regulation 8, Rule 47, Section 113. Organic Compounds: Air Stripping and Soil Vapor Extraction Operations: Exemption, Air Stripping and Soil Vapor Extraction Operations Less Than 1 Pound Per Day. 15 June.

consultants

Details on the location and routing of system components may change during installation, as these will be further discussed and agreed upon with EPA and the property management group's input prior to system construction.

5.2 **SVE System Monitoring**

While operating, the SVE system shall be monitored as follows:

• Startup sampling:

- Measurement of vacuum at the SVE well riser pipe (SVE-01) and vapor monitoring point (SP-01) to monitor the radius of influence (ROI) achieved by the SVE system;
- o Field screen SVE-01 and SP-01 for VOCs using a PID. Note that a ppbRAE shall be used to achieve lower detection limits/higher sensitivity; and
- o Collect VOC samples from SVE-01 and SP-01 for laboratory analysis, to confirm/correlate the VOC screening results.

• Bi-Weekly (twice per month) monitoring (Months 1-3):

 Inspect system, measure system vacuums, and field screen SVE-01 and SP-01 for VOCs using a PID.

• Monthly monitoring (Months 4-6):

 Inspect system, measure system vacuums, and field screen SVE-01 and SP-01 for VOCs using a PID.

• Quarterly monitoring (Quarters 1 and 2, to be performed in concurrence with select monthly monitoring events):

O Collect VOC samples from SVE-01 and SP-01 for laboratory analysis, to confirm/correlate the VOC screening results. In accordance with the Draft Tiering Work Plan, three liters of air will be extracted from each sample port and field screened prior to sample collection.

The data will be used to demonstrate mass removal and to evaluate when to shut down the system. It is anticipated that the system will be shut down after 6 months of operation, or when VOC concentrations reach asymptotic levels.

The system will continue to be monitored after shutdown on a monthly basis via field screening of SVE-01 and SP-01 for VOCs using a PID. In the event that significant rebound (e.g., more than one order-of-magnitude) of VOC concentrations is observed, samples for laboratory

Geosyntec^o

consultants

analysis will be collected to confirm the rebound and the SVE system may be restarted, upon concurrence of Geosyntec, Renesas, property management, and EPA.

If VOC concentrations do not rebound by more than one order-of-magnitude after 6 months of post-shutdown monitoring, samples will be collected from IA-06, SVE-01, and SP-01, analyzed for VOCs, and compared to the pre-shutdown data. If the analytical results indicate the VOC concentrations in vicinity of the SVE system have decreased, Geosyntec will recommend to EPA that the SVE system be decommissioned and removed from the Site.

Following system decommissioning, an additional round of sampling will be performed. The samples will be collected using the sampling methodology approved in the July 2012 "Work Plan to Evaluate the Potential Vapor Intrusion Pathway – 501 Ellis Street, Mountain View, California." The results will be used to update the response action tier for the building following operation of the SVE system.

5.3 Schedule

Once the response actions are approved, it will take one to two months to coordinate and complete the system installation, in accordance with the following general schedule:

• Weeks 1-2 (commence upon receipt of EPA approval):

- Finalize construction plans;
- Submit Building Permit application (including SVE system plans) to City of Mountain View;
- Submit Permit to Construct application and Permit to Operate waiver request to BAAQMD; and
- Solicit bids from Subcontractors for system construction.

• Weeks 3-4:

- Receive bids and select Subcontractor; and
- o Receive permits and waiver approval.

• Weeks 5-6 (commence upon receipt of permits and waiver approval):

System construction and startup/shakedown testing.

SVE system monitoring, as described in Section 5.2, would commence upon startup in week 6.

5.4 Reporting

Informal progress reports, including significant milestone updates and interim results, will be provided to EPA periodically throughout construction, startup, and operation of the SVE system.

A final summary report will be prepared at the conclusion of the response action implementation and will include the following information:

- A summary of activities related to SVE system installation, including drawings showing the final system layout;
- Results of SVE system monitoring and post-operation rebound monitoring;
- Results of post-SVE sampling;
- An assigned building tier at the conclusion of SVE system operation based on the criteria described in Section 5.2; and
- A long-term monitoring plan for the building, if necessary based on the assigned building tier.

The summary report will be submitted to USEPA within 60 days of completion of confirmation sampling.

AMBIENT AIR ANALYTICAL RESULTS 501 Ellis Street TABLE 1

Mountain View, California

Location ID:		$OA-01^2$	IA-01	IA-01 IA-02	IA-03 IA-04 IA-05	IA-04	50-VI	IA-06
I ob Commis ID.	Indoor Air 1208156AR 1208156AR 1208156AR 1208156AR 1208156AR 1208156AR 1208156AR	1208156AR	1208156AR	1208156AR	1208156AR	1208156AR	1208156AR	1208156AR
Lab Sample ID.	Cleanup Levels ¹ 1-01A	1-01A	1-02A	1-03A	1-04A	1-05A	1-06A	1-07A
Date Sampled:	$(\mu g/m^3)$	8/2/2012	8/2/2012	8/2/2012	8/2/2012	8/2/2012	8/2/2012	8/2/2012
Units:		µg/m³	µg/m³	µg/m³	µg/m³	μg/m³	μg/m³	µg/m³
TO-15 Volatile Organic Compounds	spu							
1,1-Dichloroethane	9	0.15 U	0.13 U	0.13 U	0.13 U	0.14 U	0.13 U	0.14 U
1,1-Dichloroethene	200	0.075 U	0.075 U 0.066 U 0.065 U 0.063 U	0.065 U	0.063 U	0.050 J	0.050 J 0.065 U	U 790.0
cis-1,2-Dichloroethene	210	0.028 J	0.026 J	0.012 J	0.12 U	0.020 J	0.020 J 0.020 J	0.130 U
Tetrachloroethene	2	0.11 J	0.074 J	0.15 J	0.17 J	0.14 J	0.17 J	0.26
trans-1,2-Dichloroethene	210	0.019 J		0.030 J	0.021 J	0.011 J	0.028 J	0.03 J
Trichloroethene	5	1.1	1.9	4.1	3.9	3.7	3.1	3.6
Vinyl Chloride	2	0.048 U	0.048 U 0.042 U 0.042 U 0.040 U 0.043 U 0.042 U 0.043 U	0.042 U	0.040 U	0.043 U	0.042 U	0.043 U

1. Haley & Aldrich, Inc. 2011. Site-Wide Vapor Intrusion Sampling and Analysis Work Plan for Response Action Tiering Middlefield-Ellis-Whisman Superfund Area, Mountain View, California and Moffett Field: Table V - Indoor Air Cleanup Levels for MEW Chemicals of Potential Concern - Commercial. 29 September.

2. Outdoor air is compared to indoor air results, not to non-residential indoor air cleanup levels.

μg/m³ - micrograms per cubic meter

 ${\bf Bolded}$ values represent compounds above laboratory reporting limit ${\bf U}$ - undetected, associated value is the method reporting limit

- J Estimated value

PATH-FDRAIN (EPA) is a pathway sample collected at the fire drain in the Server Room and analyzed at EPA Region 9 laboratory.

SUB-SLAB SOIL VAPOR ANALYTICAL RESULTS 501 Ellis Street TABLE 2

Mountain View, California

						TO-15 V	TO-15 Volatile Organic Compounds	spunodi		
	Lab Sample ID	Date	Units	1,1-Dichloroethane	,1-Dichloroethane 1,1-Dichloroethene	cis-1,2- Dichloroethene	Tetrachloroethene	trans-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride
Screening Levels										
Sub-Slab Screening Levels ¹	1	-	(µg/m3)	09	7,000	2,100	20	2,100	50	20
Sub-Slab Screening Levels ²			(µg/m3)	120	14,000	4,200	40	4,200	100	40
Sub-Slab Samples										
SSP-01	1208156B-09A 8/3/2012	8/3/2012	(µg/m3)	2.9 U	2.9 U	2.9 U	U 6.4	2.9 U	5.1	1.8 U
SSP-01 (EPA)	1208013-01	8/3/2012	(µg/m3)	N 8	N 8	N 8	$\Omega = 01$	Ω 8	5 C1,J	5 U
SSP-02 Uncorrected*	1208156B-10A	8/5/2012	(µg/m3)	2.7 U	2.6 U	2.6 U	8.0	2.6 U	48	1.7 U
SSP-02 Corrected*	1208156B-10A	8/5/2012	(µg/m3)	3.2 U	3.1 U	3.1 U	9.6	3.1 U	57.3	2.0 U
SSP-2 DUP Uncorrected*	1208156B-15A	8/5/2012	(µg/m3)	2.9 U	2.8 U	2.8 U	10	2.8 U	55	1.8 U
SSP-2 DUP Corrected*	1208156B-15A	8/5/2012	(µg/m3)	3.5 U	3.3 U	3.3 U	11.9	3.3 U	65.7	2.1 U
SSP-03	1208156B-11A	8/3/2012	(µg/m3)	3.1 U	3 U	3 U	7.4	3 U	38	1.9 U
SSP-03 (EPA)	1208013-02	8/3/2012	(µg/m3)	N 8	N 8	8 U	10	N 8	50	5 U
SSP-04	1208156B-12A	8/5/2012	(µg/m3)	2.8 U	2.8 U	2.8 U	4.7 U	2.8 U	9.3	1.8 U
SSP-05 Uncorrected*	1208156B-13A	8/3/2012	(µg/m3)	2.9 U	2.8 U	2.8 U	4.8 U	2.8 U	7.8	1.8 U
SSP-05 Corrected*	1208156B-13A	8/3/2012	(µg/m3)	3.5 U	3.3 U	3.3 U	5.7 U	3.3 U	9.3	2.1 U
SSP-05 (EPA)	1208013-03	8/3/2012	(µg/m3)	N 8	8 N	8 U	10 U	N 8	8 C1, J	5 U
SSP-06	1208156B-14A	8/3/2012	(µg/m3)	3.9 U	3.8 U	3.8 U	270	3.8 U	1,900	2.5 U
SSP-06 (EPA)	1208013-04	8/3/2012	(µg/m3)	8 N	8 U	8 U	300	8 U	1,800	5 U
Pathway Sample										
PATH-FDRAIN (EPA)**	1208013-05	8/3/2012	(µg/m3)	N 8	N 8	30 U	10 U	30 U	300	5 U

Notes:

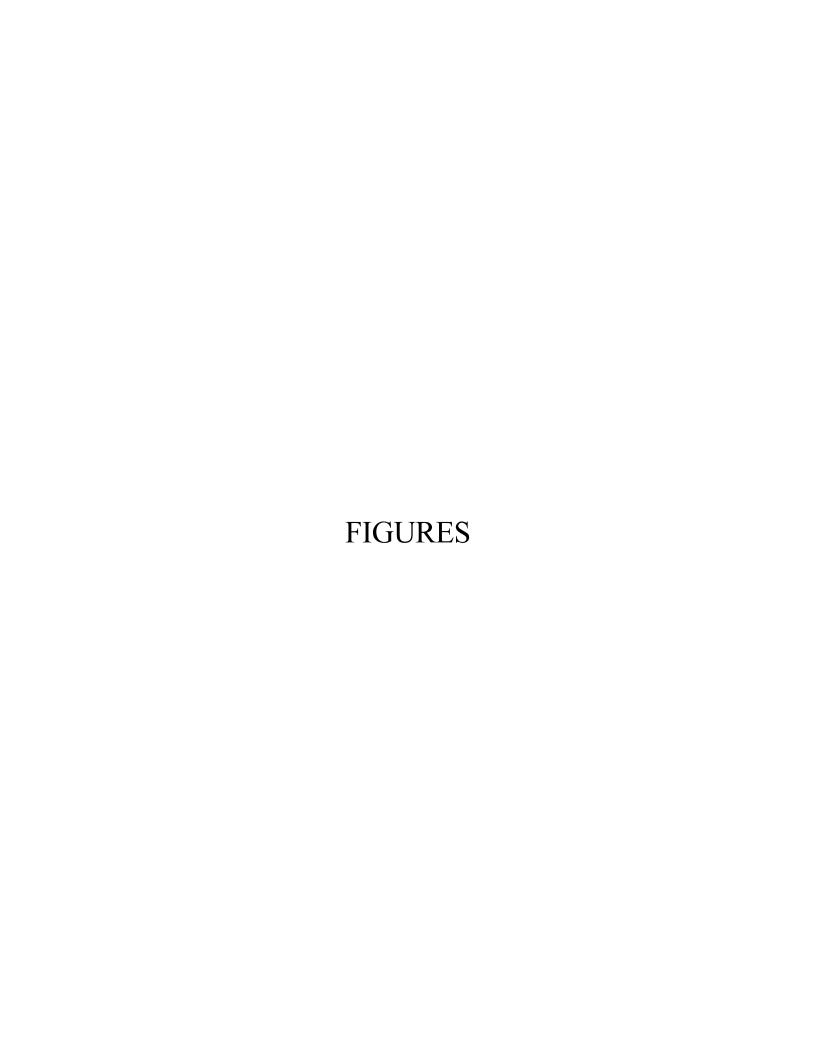
- 1 Based on Indoor Air Screening Levels, using an attenuation factor of 0.1 per EPA's Vapor Intrusion Screening Level Calculator User's Guide (March 2012).

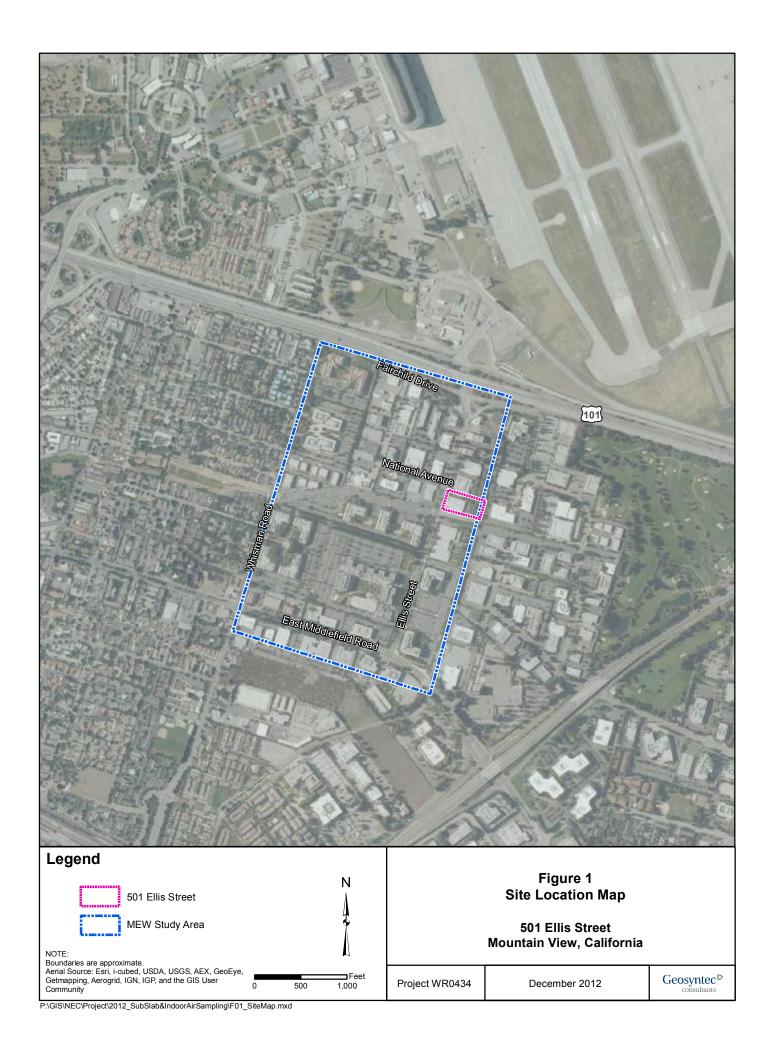
 2 Based on Indoor Air Screening Levels, using an attenuation factor of 0.05 per DTSC's Vapor Intrusion Guidance Document, Table 2, for the existing commercial building subslab scenario (October 2011).

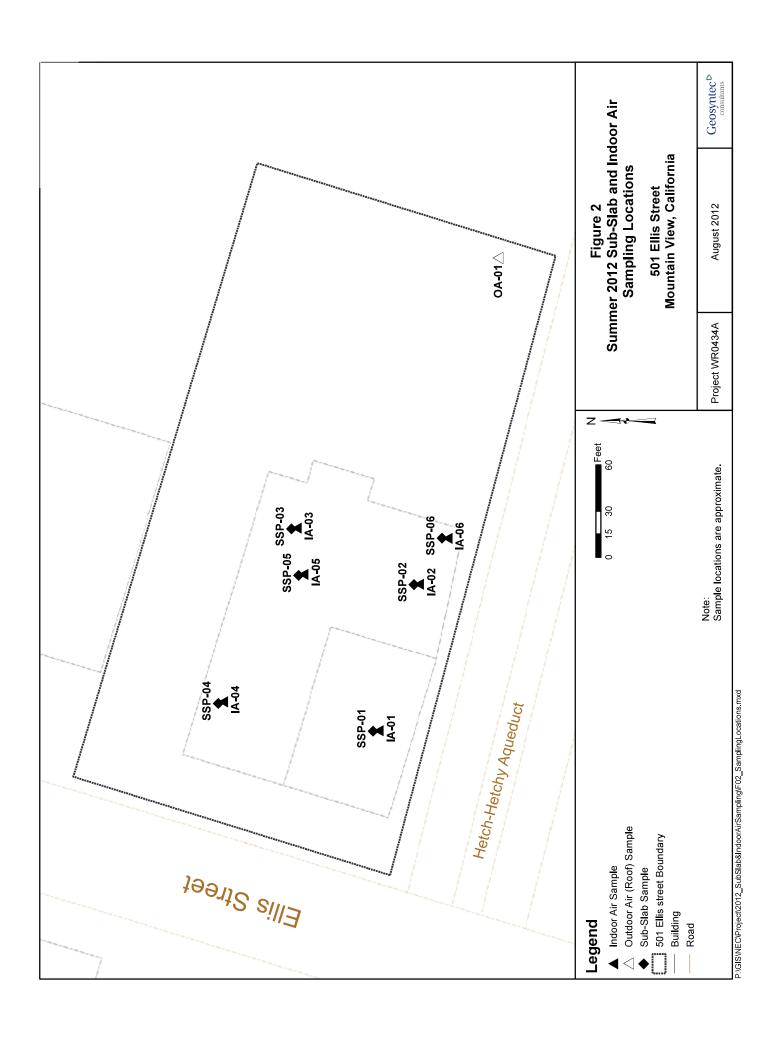
^{*} analytical data have been corrected for influx of helium from shroud.

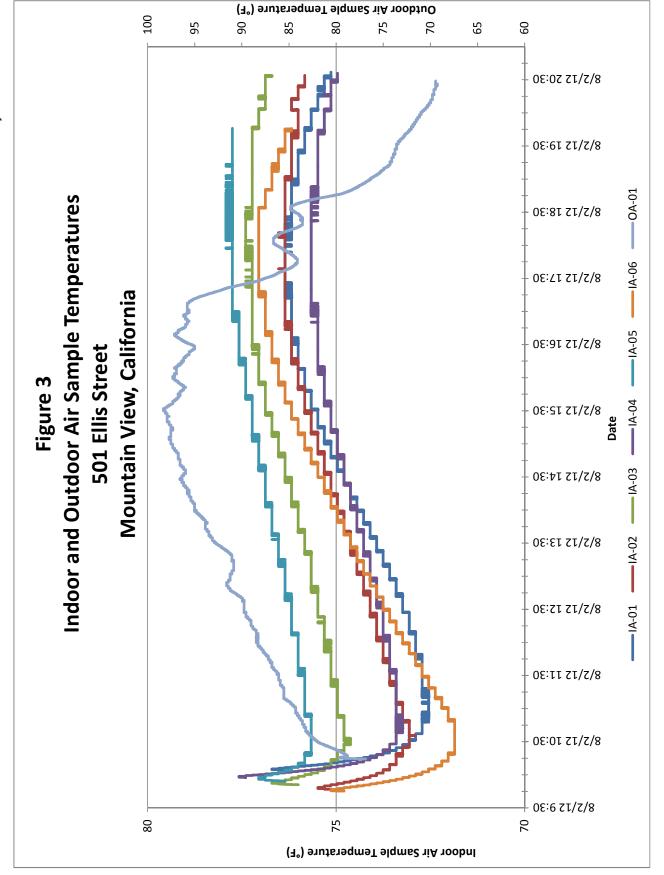
^{**}EPA lab report did not provide helium result, therefore this result is not corrected for influx of helium from the shroud.

Bolded values represent compounds above laboratory reporting limi

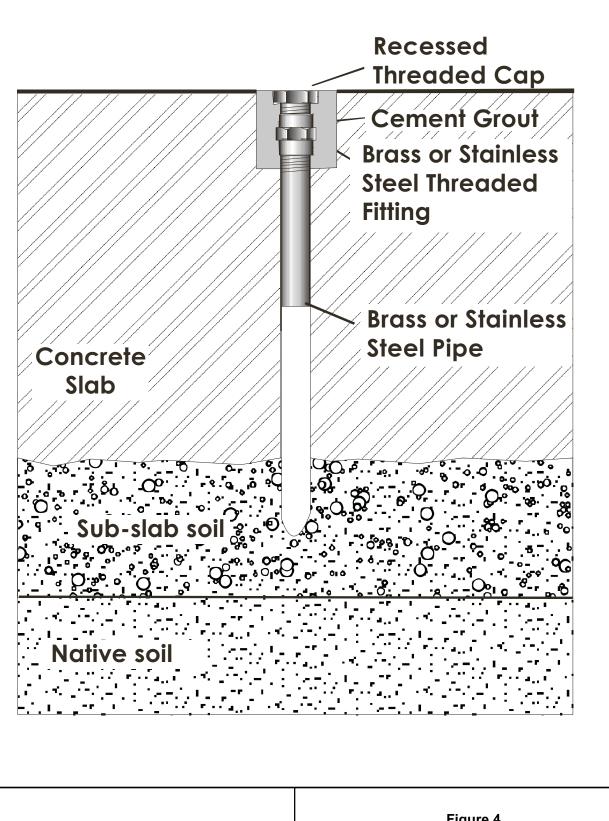

μg/m³ - micrograms per cubic meter

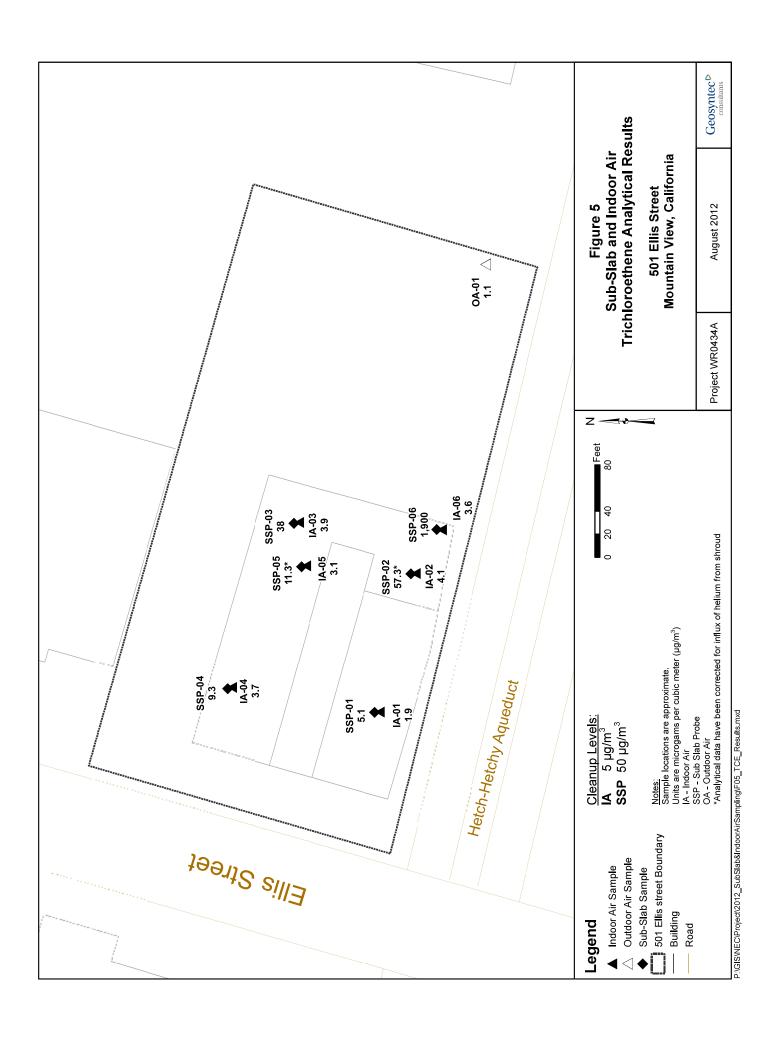

U - undetected, associated value is the method reporting limit


J - The reported result for this analyte should be considered an estimated value


C1 - The reported concentration for this analyte is below the quantitation limit

SSP-01 (EPA), SSP-03 (EPA), SSP-05 (EPA), and SSP-06 (EPA) are co-located duplicate sub-slab sample analyzed at EPA Region 9 laboratory.




Figure 4 Sub-Slab Probe

501 Ellis Street Mountain View, California

Project WR0434

December 2012

Geosyntec Consultants

APPENDIX A Building Walk Through Survey

COMMERCIAL BUILDING SURVEY

Survey Completed b	y:	Jackie Lanzor	1
Date:23 July 20	012 Site	Name:	501 Ellis St
Part I: BUILDING	SINFORMATIO	ON	
501 Ellis Street, Mou	untain View, CA	94043	
Property Contact: Da	avid Conklin		
Owner / Renter oth	er: Managing E	Broker for Ren	ault & Handley (property owners)
Contact's Phone: h	iome ()		work (650) <u>461-2202</u>
cell ()			
Building occupants:	Adults 0 Off	fice Staff: 0	_ Non-office Staff: _ 0 _
Building is co	urrently vacant		
Part II: Building Constitution Building type: (Circle)		strip mall /	commercial / industrial
Building Description	1:		
Single story building	g, currently vacar	nt. Offices/cor	nference rooms located along outside
walls, open interior f	formerly utilized	for cubicle sp	pace or storage. One set of restrooms,
one kitchen, and one	sink.		
Part II: OCCUPAN	NCY		
Is the lowest level or	ccupied? (Circle	one) Full-tin	ne, Occasionally, Seldom,
Almost Never	NOTE: Occup	ancy would cl	hange to full-time when a tenant is
	retained		

• Level: General Use of Each Floor (e.g., office, storage, manufacturing)

1st Floor Office/warehouse space – currently vacant

Part III: CONSTRUCTION CHARACTERISTICS (Circle all that apply)
a. Above grade construction: wood frame concrete stone, brick, steel
b. Floor:concrete_other
c. Concrete floor: unsealed, sealed, sealed with <u>sealant status unknown, likely unsealed</u>
d. Foundation walls poured, block, stone, other
e. Foundation walls: unsealed, sealed with <u>sealant status unknown</u> , <u>likely unsealed</u>
f. Floor drains present? Y N
i. Sump present? Y (N)
j. Water in sump? Y / N /(not applicable)
• Lowest level depth below grade: <u>N/A</u> (feet)
• Identify potential soil vapor entry points and approximate size (e.g., cracks, utility
ports, drains)
Floor drains are located in the restrooms. A sewer cleanout is located to the north of the
restrooms along the wall, on the eastern side of the building. Two conduits penetrate the
slab in the southwest corner of the building. Cracks in the slab were identified, to be
sealed later in the week.
• Type of ground cover around outside of building: (Circle one) grass / concrete /
asphalt other specify)
Mulched areas with shrubbery around perimeter of the building.

The state of the s

• Irrigation Present: (Circle one) Yes / Yes (but not used) / No:

Sprinkler system around the perimeter for landscaping.

• Is the building insulated? (Circle one Y/N How air tight? Tight / Average) Not

Tight: Type of insulation is unknown

- Age of building: <u>~45 years</u>
- Age of separate additions or expansion: None
- Describe location of any tunnels: <u>None</u>
- Describe location of all load bearing walls (add to building diagram):
 Outer walls
- Does a gap exist between footing and floor slab: Yes(No_____
- Describe location of all roof support columns (add to building diagram):

Support columns located throughout the building at 40-ft spacing on center

• Describe location of all Isolation Piers (add to building diagram):

None known

Part IV: HEATING, VENTING and AIR CONDITIONING

*** Note – this section not completed since HVAC system is currently off. Refer to Winter 2005 Air Sampling Report for Taylor Engineering HVAC Report***

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation, Heat pump, Forced Air, Roof Top Units, Other

- The primary type of fuel used is:
- Natural Gas, Fuel Oil, Electric, Propane,

•	Hot water tanks fueled by:
•	Boiler/furnace located in: Basement, Outdoors, Main Floor, Other
•	Air conditioning: Central Air, Window units, Open Windows, None
•	Are there air distribution ducts present? Y / N
De	scribe the supply and cold air return ductwork, and its condition where visible,
inc	cluding whether there is a cold air return and the tightness of duct joints. Indicate the
loc	eations on the floor plan diagram.
Bu	ilding Ventilation:
•	Bathroom exhaust fans present:
•	Loading dock doors left open:
•	size: frequency:
•	Manufacturing Process vents:
•	Additional Building Vents:

Part V – OUTSIDE CONTAMINANT SOURCES

List nearby land use: (industrial/commercial/residential?)

North: Commercial/industrial South: Commercial

West: Commercial/residential East: Commercial/residential

Other stationary sources nearby (gas stations, emission stacks, other manufacturing

facilities, etc.): None

Heavy vehicular traffic nearby (or other mobile sources): <u>Highway 101 located</u>

approximately 1,500 ft to the north of the site

Part VI – INDOOR CONTAMINANT SOURCES

Identify all potential indoor sources found in the building, the location of the source (floor &room)

Potential Sources	Description:
Location(s)	
On countertop in northwestern portion of the building, along the western partition wall	Paint cans

Part VII – MISC. ITEMS

•	Any known spills of a chemical immediately outside or inside the building? Yes (No
•	Describe (with location):
•	Have any pesticides/herbicides been applied around the building foundation or in the
	yard/gardens? Yes No
•	If so, when and which chemicals?
	Are petroleum-powered machines or vehicles Y /N NA
b.	Number and type of forklift used:
c	Has the building ever had a fire? Y (N) Describe:

Part IX: PRODUCT INVENTORY FORM

Make & Model of field instrument used: <u>MiniRAE PID</u> List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading	Photo ** Y / N
On countertop in northwestern portion of the building, along the western partition wall	Paint cans	5 cans	U	Acrylic polymers, Nepheline Syenite, Water, Titanium dioxide, Silica (amorphous, precipitated and gel), Aluminum hydroxide, Clay (kaolin)	0.0	N

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

1111 Broadway, 6th Floor Oakland, CA 94607 PH 510.285.2700 FAX 510.836.3114 www.geosyntec.com

ADDITIONAL BUILDING WALKTHROUGH NOTES:

APPENDIX B Photo Log

GEOSYNTEC CONSULTANTS

Photographic Record

Client: NEC Project Number: WR0434A

Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 1

Date: 7/23/2012

Photo Description: Cable conduits before sealing.

Photograph 2

Date: 7/26/2012

Photo Description: Installation of foam sealant inside plastic cap for fiber optic cable conduits.

GEOSYNTEC CONSULTANTS

Photographic Record

Client: NEC Project Number: WR0434A

Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 3

Date: 7/26/2012

Photo Description:

Plastic caps for fiber optic cable conduits with dried foam sealant. Front view.

Photograph 4

Date: 7/26/2012

Photo Description:

Plastic caps for fiber optic cable conduits with dried foam sealant. Rear view.

GEOSYNTEC CONSULTANTS

Photographic Record

Client: NEC Project Number: WR0434A

Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 5

Date: 7/23/2012

Photo Description:

Fire water supply pipe before sealing.

Photograph 6

Date: 7/26/2012

Photo Description:

Fire water supply pipe after sealing with concrete grout.

GEOSYNTEC CONSULTANTS

Photographic Record

Client: NEC Project Number: WR0434A

Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 7

Date: 7/23/2012

Photo Description:

Floor Cracks in SE building corner before

sealing.

Photograph 8

Date: 7/23/2012

Photo Description: Floor cuts before

sealing.

GEOSYNTEC CONSULTANTS

Photographic Record

Project Number: WR0434A Client: NEC

Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 9

Date: 7/23/2012

Photo Description:

Floor joint before

sealing.

Photograph 10

Date: 7/25/2012

Photo Description:

Sealed floor crack.

AppB_Photolog_2012.11.28.docx

GEOSYNTEC CONSULTANTS

Photographic Record

Client: NEC Project Number: WR0434A

Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 11

Date: 7/25/2012

Photo Description: Sealed floor crack.

Photograph 12

Date: 7/25/2012

Photo Description: Sealed floor crack.

GEOSYNTEC CONSULTANTS

Photographic Record

Client: NEC Project Number: WR0434A

Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 13

Date: 7/30/2012

Photo Description: SSP-01/IA-01

Location

Photograph 14

Date: 7/30/2012

Photo Description:

SSP-02/IA-02

Location

GEOSYNTEC CONSULTANTS

Photographic Record

Client: NEC Project Number: WR0434A

Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 15

Date: 7/30/2012

Photo Description:

SSP-03/IA-03 Location

Photograph 16

Date: 7/30/2012

Photo Description:

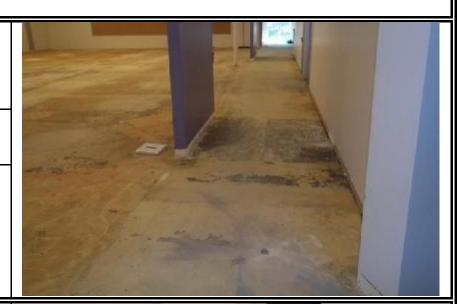
SSP-04/IA-04

Location

GEOSYNTEC CONSULTANTS

Photographic Record

Client: NEC Project Number: WR0434A


Site Name: 501 Ellis Street Site Location: Mountain View, CA

Photograph 17

Date: 7/30/2012

Photo Description:

SSP-05 Location. Note that IA-05 was located in the server room, on the other side of the wall.

Photograph 18

Date: 7/30/2012

Photo Description: SSP-06/IA-06

Location

APPENDIX C Titebond Self-Leveling Concrete Joint Sealer MSDS

Franklin International

Material Safety Data Sheet

Titebond Self-Leveling Concrete Joint Sealer

1. Product and company identification

CAS # : mixture

Address : Franklin International

2020 Bruck Street Columbus OH 43207

Contact person : Franklin Technical Services

Telephone : (800) 877-4583
In case of emergency : Franklin Security (614) 445-1300

(614) 445-1300 : 00

 Reference number
 : 00

 Product code
 : 3191

 Date of revision
 : 3/28/2012.

 Print date
 : 3/29/2012.

 Chemtrec (24 Hour)
 : (800) 424 - 9300

 Chemtrec International
 : (703) 527 - 3887

Product use : self leveling concrete joint sealer

sealer

2. Hazards identification

Emergency overview

Physical state : Liquid. [Paste.]

Color : Gray. [Light]

Odor : Slight

Hazard statements : MAY CAUSE EYE AND SKIN IRRITATION. This product releases methanol during cure.

Precautionary measures : Avoid contact with eyes, skin and clothing. Wash thoroughly after handling.

OSHA/HCS status : While this material is not considered hazardous by the OSHA Hazard Communication

Standard (29 CFR 1910.1200), this MSDS contains valuable information critical to the safe handling and proper use of the product. This MSDS should be retained and

available for employees and other users of this product.

Routes of entry : Dermal contact. Eye contact. Inhalation. Ingestion.

Potential acute health effects

Inhalation : No known significant effects or critical hazards.Ingestion : No known significant effects or critical hazards.

Skin : Slightly irritating to the skin. Prolonged or repeated contact can defat the skin and lead to

irritation, cracking and/or dermatitis.

Eyes : Slightly irritating to the eyes. This product may irritate eyes upon contact.

Potential chronic health effects

Chronic effects: No known significant effects or critical hazards.Carcinogenicity: No known significant effects or critical hazards.

3. Composition/information on ingredients

<u>Canada</u>

Name	CAS number	%
methanol	67-56-1	0.5 - 1

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

4. First aid measures

Eye contact : Check for and remove any contact lenses. Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical

attention immediately.

Skin contact: In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Clean

shoes thoroughly before reuse. Get medical attention immediately.

Inhalation : Move exposed person to fresh air. If not breathing, if breathing is irregular or if

respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention

immediately.

Ingestion : Wash out mouth with water. Do not induce vomiting unless directed to do so by medical

personnel. Never give anything by mouth to an unconscious person. Get medical

attention immediately.

Protection of first-aiders : No action shall be taken involving any personal risk or without suitable training. It may

be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

Notes to physician : No specific treatment. Treat symptomatically. Contact poison treatment specialist

immediately if large quantities have been ingested or inhaled.

5. Fire-fighting measures

Flammability of the product : In a fire or if heated, a pressure increase will occur and the container may burst.

Extinguishing media

equipment for fire-fighters

Suitable: Use an extinguishing agent suitable for the surrounding fire.

Not suitable : None known.

Special exposure hazards: Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable

training.

Special protective : Fire-fig

: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

6. Accidental release measures

Personal precautions : No action shall be taken involving any personal risk or without suitable training.

Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. Avoid breathing vapor or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is

inadequate. Put on appropriate personal protective equipment (see Section 8).

Environmental precautions : Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental

pollution (sewers, waterways, soil or air).

Small spill : Stop leak if without risk. Move containers from spill area. Dispose of via a licensed

waste disposal contractor. Absorb with an inert material.

6. Accidental release measures

Large spill

: Stop leak if without risk. Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see section 13). Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see section 1 for emergency contact information and section 13 for waste disposal.

7. Handling and storage

Handling

: Put on appropriate personal protective equipment (see Section 8). Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Do not ingest. Avoid contact with eyes, skin and clothing. Avoid breathing vapor or mist. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Empty containers retain product residue and can be hazardous. Do not reuse container.

Storage

: Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

8. Exposure controls/personal protection

Canada

Occupational exposure limit	<u>s</u>	TWA ((8 hours))	STEL ((15 mins	;)	Ceilin	g		
Ingredient	List name	ppm	mg/m³	Other	ppm	mg/m³	Other	ppm	mg/m³	Other	Notations
	US ACGIH 2/2010 AB 4/2009 BC 9/2010 ON 7/2010 QC 6/2008	200 200 200 200 200 200	262 262 - 262 262	- - - -	250 250 250 250 250 250	328 328 - 328 328	- - - -	- - - -	- - - -	-	[1] [1] [1] [1] [1]

^[1]Absorbed through skin.

Mexico

Occupational exposure limits

No exposure limit value known.

Consult local authorities for acceptable exposure limits.

Recommended monitoring procedures

: If this product contains ingredients with exposure limits, personal, workplace atmosphere or biological monitoring may be required to determine the effectiveness of the ventilation or other control measures and/or the necessity to use respiratory protective equipment.

Engineering measures

: No special ventilation requirements. Good general ventilation should be sufficient to control worker exposure to airborne contaminants. If this product contains ingredients with exposure limits, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure below any recommended or statutory limits.

Hygiene measures

: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.

Personal protection

8. Exposure controls/personal protection

: Use a properly fitted, air-purifying or air-fed respirator complying with an approved Respiratory

standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe

working limits of the selected respirator.

Chemical-resistant, impervious gloves complying with an approved standard should be Hands

worn at all times when handling chemical products if a risk assessment indicates this is

necessary.

Eyes Safety eyewear complying with an approved standard should be used when a risk

assessment indicates this is necessary to avoid exposure to liquid splashes, mists or

Skin Personal protective equipment for the body should be selected based on the task being

performed and the risks involved and should be approved by a specialist before handling

this product.

Environmental exposure

controls

Emissions from ventilation or work process equipment should be checked to ensure they

comply with the requirements of environmental protection legislation.

9. Physical and chemical properties

Physical state : Liquid. [Paste.]

: Closed cup: >93.333°C (>200°F) Flash point

Color Gray. [Light] Odor : Slight

Relative density 1.58 Volatility : 1% (w/w)

VOC (less water, less exempt solvents)

: 10 a/l

Solubility : Insoluble in the following materials: cold water and hot water.

10. Stability and reactivity

Chemical stability : The product is stable.

Conditions to avoid : No specific data. Incompatible materials : No specific data.

Hazardous decomposition

products

: Under normal conditions of storage and use, hazardous decomposition products should

not be produced.

Possibility of hazardous

reactions

: Under normal conditions of storage and use, hazardous reactions will not occur.

Hazardous polymerization

: Under normal conditions of storage and use, hazardous polymerization will not occur.

Incompatibility

Slightly reactive or incompatible with the following materials: moisture.

11. Toxicological information

United States

Acute toxicity

No known significant effects or critical hazards.

Chronic toxicity

No known significant effects or critical hazards.

Irritation/Corrosion

Conclusion/Summary

Skin : Prolonged or repeated contact can defat the skin and lead to irritation, cracking and/or

dermatitis.

Eyes : This product may irritate eyes upon contact.

Sensitizer

3/29/2012. 3191 4/9

11. Toxicological information

No known significant effects or critical hazards.

Carcinogenicity

No known significant effects or critical hazards.

Mutagenicity

No known significant effects or critical hazards.

Teratogenicity

No known significant effects or critical hazards.

Reproductive toxicity

No known significant effects or critical hazards.

Canada

Acute toxicity

Product/ingredient name	Result	Species	Dose	Exposure
methanol	LC50 Inhalation Gas. LC50 Inhalation Gas. LD50 Dermal LD50 Oral	Rat Rabbit	'''	1 hours 4 hours -

No known significant effects or critical hazards.

Chronic toxicity

No known significant effects or critical hazards.

Irritation/Corrosion

Product/ingredient name	Result	Species	Score	Exposure	Observation
methanol	Eyes - Moderate irritant	Rabbit		24 hours 100 milligrams	-
	Eyes - Moderate irritant Skin - Moderate irritant	Rabbit Rabbit	F	40 milligrams 24 hours 20 milligrams	-

Conclusion/Summary

Skin : Prolonged or repeated contact can defat the skin and lead to irritation, cracking and/or

dermatitis.

Eyes : This product may irritate eyes upon contact.

Sensitizer

No known significant effects or critical hazards.

Carcinogenicity

No known significant effects or critical hazards.

Mutagenicity

No known significant effects or critical hazards.

Teratogenicity

No known significant effects or critical hazards.

Reproductive toxicity

No known significant effects or critical hazards.

Mexico

Acute toxicity

No known significant effects or critical hazards.

Chronic toxicity

No known significant effects or critical hazards.

Irritation/Corrosion

11. Toxicological information

Product/ingredient name	Result	Species	Score	Exposure	Observation
Not available.					

Conclusion/Summary

Skin : Prolonged or repeated contact can defat the skin and lead to irritation, cracking and/or

dermatitis.

Eyes: This product may irritate eyes upon contact.

Sensitizer

No known significant effects or critical hazards.

Carcinogenicity

No known significant effects or critical hazards.

Mutagenicity

No known significant effects or critical hazards.

Teratogenicity

No known significant effects or critical hazards.

Reproductive toxicity

No known significant effects or critical hazards.

12. Ecological information

Ecotoxicity

: No known significant effects or critical hazards.

United States

Aquatic ecotoxicity

No known significant effects or critical hazards.

Persistence/degradability

No known significant effects or critical hazards.

Canada

Aquatic ecotoxicity

Product/ingredient name	Result	Species	Exposure
methanol	Acute EC50 16.912 mg/L Marine water Acute LC50 2500000 ug/L Marine water	Algae - Ulva pertusa Crustaceans - Crangon crangon - Adult	96 hours 48 hours
	Acute LC50 3289 to 4395 mg/L Fresh water	Daphnia - Daphnia magna - Neonate - <24 hours	48 hours
	Acute LC50 >100000 ug/L Fresh water	Fish - Pimephales promelas - Juvenile (Fledgling, Hatchling, Weanling) - 0.2 to 0.5 g	96 hours

No known significant effects or critical hazards.

Persistence/degradability

No known significant effects or critical hazards.

Mexico

Aquatic ecotoxicity

No known significant effects or critical hazards.

Persistence/degradability

No known significant effects or critical hazards.

13. Disposal considerations

Waste disposal

: The generation of waste should be avoided or minimized wherever possible. Significant quantities of waste product residues should not be disposed of via the foul sewer but processed in a suitable effluent treatment plant. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

Disposal should be in accordance with applicable regional, national and local laws and regulations.

Refer to Section 7: HANDLING AND STORAGE and Section 8: EXPOSURE CONTROLS/PERSONAL PROTECTION for additional handling information and protection of employees.

14. Transport information

Regulatory information	UN number	Proper shipping name	Classes	PG*	Label	Additional information
DOT Classification	Not regulated.	-	-	-		-
TDG Classification	Not regulated.	-	-	-		-
Mexico Classification	Not regulated.	-	-	-		-
ADR/RID Class	Not regulated.	-	-	-		-
IMDG Class	Not regulated.	-	-	-		-
IATA-DGR Class	Not regulated.	-	-	-		-

PG*: Packing group

15. Regulatory information

United States

HCS Classification: Not regulated.

U.S. Federal regulations :

TSCA 8(a) IUR Exempt/Partial exemption: Not determined

United States inventory (TSCA 8b): All components are listed or exempted.

SARA 302/304/311/312 extremely hazardous substances: No products were found. SARA 302/304 emergency planning and notification: No products were found. SARA 302/304/311/312 hazardous chemicals: No products were found. SARA 311/312 MSDS distribution - chemical inventory - hazard identification: No

products were found.

15. Regulatory information

Clean Air Act Section

112(b) Hazardous Air

: Not listed

Pollutants (HAPs)

Clean Air Act Section 602

: Not listed

Class I Substances

Clean Air Act Section 602

Not listed

Class II Substances

DEA List I Chemicals

: Not listed

(Precursor Chemicals)

DEA List || Chemicals (Essential Chemicals) : Not listed

State regulations

Massachusetts : None of the components are listed. **New York** : None of the components are listed. **New Jersey** : None of the components are listed. Pennsylvania : None of the components are listed.

Canada

WHMIS (Canada) : Class D-2A: Material causing other toxic effects (Very toxic).

Canadian lists

Canadian NPRI : None of the components are listed. **CEPA Toxic substances** : None of the components are listed.

: Not determined. Canada inventory

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all the information required by the Controlled Products Regulations.

Mexico

Classification

International regulations

International lists : Australia inventory (AICS): Not determined.

China inventory (IECSC): Not determined.

Japan inventory: Not determined. Korea inventory: Not determined.

New Zealand Inventory of Chemicals (NZIoC): Not determined.

Philippines inventory (PICCS): Not determined.

Chemical Weapons

Convention List Schedule I

: Not listed

Chemicals

Chemical Weapons

Not listed

Convention List Schedule

II Chemicals

Chemical Weapons Convention List Schedule : Not listed

III Chemicals

16. Other information

Label requirements
Hazardous Material
Information System (U.S.A.)

: MAY CAUSE EYE AND SKIN IRRITATION. This product releases methanol during cure.

Health
Flammability
1
Physical hazards
0

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks Although HMIS® ratings are not required on MSDSs under 29 CFR 1910.1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered mark of the National Paint & Coatings Association (NPCA). HMIS® materials may be purchased exclusively from J. J. Keller (800) 327-6868.

The customer is responsible for determining the PPE code for this material.

National Fire Protection Association (U.S.A.)

Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

Date of printing: 3/29/2012.Date of issue: 3/28/2012.Date of previous issue: 3/2/2012.

Version : 2

✓ Indicates information that has changed from previously issued version.

Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

Appendix D Soil Gas Probe Measurements

1111 Broadway, 6th Floor Oakland, California 94607 (510) 836-3034 Fax (510) 836-3036

SOIL GAS PROBE MEASUREMENTS

										٦	(510)836	(510) 836-3034 Fax (510) 836-3036) 836-3036
O Project Name:	ame: NEC			Project N	Project Number **	Probe No.:	Probe No.:	100	- 01 2280	1,450	X Sub-slab probe	Soil gas probe	sprobe 7117
d jo	MOWALN		VIEW, G	Lal			Landtech GEM 2000 Landfill Gas Meter Serial No. M:	andfill Gas Me	eter Serial No	M. GIEM	101	10	
Weather:	Suning Park	-				MDG 200	(I)	ector Serial N	O: MGID	p 2002-1	5.13		
Field Personnel:		20				Tracer Gas:	as: 🔼 Helium	m Cother					
Surface Tyl	Surface Type:	Con	crete Gr	ass 🔲 Other_	©	1 Casing Volume	(e) (l) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	hut in test pric	or to pneuma	lic test com	pleted, 6 4	⑤ Shut in test prior to pneumalic test completed, 6^{4} in. H_{2} O held for 6^{4} secor	r <mark>coD</mark> secor
Surface Thickness	ess the season of the season o		iches/centimeters	ers 🔲 Unknown		Sub-slab][@	Start of Pneumatic Test:	natic Test:	9.28			
(A) Initial Vacu	hitial Vacuum (prior to pumping)	nping)	0.0	in. H ₂ O		soll gas probe	[r]	Elapsed Time (min.)	J. J	Pump Flow Rate (LPM)	np Rate M)	Wel Vov in	Well Head Vacuum in. H ₂ O
Side to Control	(Setalamo) (word) political vapid political		Completed?			0.0	I	_		0.1		,	7
	שומוואופממוומ	(Audd)	Completed	- 1	ביים אלים ויים	ш	7	ij		0.2	2		0
8 Shut in test	Shut in test prior to purging completed?	comple	Yes	ON X				e	T	0.5	5	16	
Purging											Tracer Gas		
Date	Start	End	Elapsed	Bag	Purge	Cumulative	CH ₄	CO ₂	O ₂	Shroud (%)	(%) p	Sample (pp.m. %)	by PID
		2	(min.)	(1)	(LPM)	(1)	(0/)	(22)	1071	Min	Max	(circle ane)	ייווקלו
8/3	4 :37 9	98.6	(Am	1	ptear	7	0.0	1.0	21.00	BN	- DIA	0.0	0.3
8/3	q.53 f:	િક ક્રા	4	11	.2	26	00	٥.١	24.7	رک	21	6.5	r
8/3	10:00 10:	10:10	4	71	2	36	00	0 0	216	13	18	12	00
(10) Helium cond the shroud?	10 Helium concentration in field screened samples is less the the stroud?	old scree	aned somples	is less than 59	Note: 1% heli	on 350 minimum concentration in Note: 1% helium = 10,000 ppm,	(1) Shut	Shut in test prior to sample collection completed? Yes $oldsymbol{\Lambda}$ No	sample colle	ection comp	oleted? Yes	□ o _N	
(a) Sample Collection	Mection								-				
Date	Time		S	Sample ID		Summa Canister ID	-	Flow Controller #	Vacuum Gauge #	# əbnr	Initial Vacuum (in. Hg)		Final Vacuum (in. Hg)
21/5/8	16:24	95P	P-61			3,530	202	38	103/03	7 8	29.58		2.71
el Dilbertuen	10,07												
d sjue							$\ $			1		_	
Comments:													
_													

	(4)	•	SOIL GA	SOIL GAS PROBE MEASUREMENTS	MEASURE	MENTS						Consultants 1111 Broadway, 6th Floor Oakland, California 94607	ants , 6th Floor nia 94607
										7	(510) 836-3	(510) 836-3034 Fax (510) 836-3036	836-3036
(1) Project Name:	ame: NEC	ي				Probe No.	0. GSP-0	20%		Sub-sk	X Sub-slab probe	Soil gas probe	probe
Date: 5	CIOS FOUND			Project Nu	umber: WROY34A.81	34A.872Mini Rae	Wini Rae 2000 Serial No.	o: line	200			Jamp	11767
catio	. 1	MOUNTAINCHIN					h GEM 2000 L	andfill Gas M	Landtech GEM 2000 Landfill Gas Meter Serial No.	 M	JOHN CHOK	7 00-	ای
Weather:	STIMM					MDG 200	MDG 2002 Helium detector Serial No.	Pector Serial N	MEIP OF	200	13		
Field Personnel: TWYKY & J	e: This	K & UL				Tracer Gas:	Sas: Helium	um Other	ш				
Recorded By:	TAMILE	17.7											
2 Surface Type: Asphalt 🐧 Concrete	ype: 🔲 Aspl	halt 🚺 Co		Grass 🔲 Other	<u>@</u>	1 Casing Volume	9	Shut in test pri	Shut in test prior to pneumatic test completed, $\overline{\mathbb{M}^3}$ in. H_2O held for	lic test com	pleted, [1] in	1. H ₂ O held for	seconds
		ب				Sub-slab							
Surface Thickness (i.e., asphalt or concrete)	iness	, in	inches/centimeters	eters Unknown		< 0.1 L < 0.1 L	<u></u>	6 Start of Pneumatic Test:	matic Test:	NN			
					<u> </u>			Elapsed Time	ime	Pump	م ر	Well	Well Head
(A) Initial Vac	Initial Vacuum (prior to pumping)	(buldund)		in. H ₂ O				(min.)		Flow Kare (LPM)	Kare M)	i.	in. H ₂ O
11										0.1			
Field tubir	ng blank rea	ding (ppm _v)	Field tubing blank reading (ppm _v) completed?	X Yes No	> PID Reading	o.o ppm^				0.2	2		
8 Shut in tea	Shut in test prior to purging completed?	ging compl	leted? Yes K	No I						0.5	5		
O Purging											Tracer Gas		٧٥٥
Date	Start	End	Elapsed	Bag	Purge	Cumulative	CH ₄	CO %	0 8	Shroud (%)	П	Sample (ppm.	by PID
			(min.)	(1)	(LPM)	(1)				Min	Max	circle one)	(A)
शहाक	1819		4	<u> </u>	3	コ	Q	1.9	(8-0	(3	16	33	0,0
	1334	1339	V	Ĵ	7	χ	D	6.7	30.6 1	15	ニ	2.60	°2
的人	MOGN K	1902	2	5	7'	96	Ø	1.1	18.0	1-	. 81	22	'n
)										
Helium Co	oncentration, d? \(\Boxed{\omega}\) Yes \(\begin{bmatrix}	in field scre	ened sample	Helium concentration in field screened samples is less than the shroud? The Shoot I No	20	of minimum concentration in Note: 1% helium = 10,000 ppm _v	(1) Shut	l in test prior t	(1) Shut in test prior to sample collection completed? Yes \square No $ ot\!$	ction comp	oleted? Yes [X ov D	
(2) Sample Collection	collection												
Date	Time	Φ		Sample ID		Summa Canister ID	\vdash	Flow Controller #	Vacuum Gauge #	# e6n	Initial Vacuum (in. Hg)		Final Vacuum (in. Hg)
2/19/10		1-100 MIPS	C0-05			38130	3	2116	103/03	ck	29.79		1.22
	7	1410/1416 S	CINO ds	10-		741117	00	89400	103/082	4	29.04	رچ (145
Comments: No	12 4064 1	Mdicates	Ш	pdding	14 A		for 410. 1	priority at 4H	201-8 bus	3			
	pheniviago toat	to 10gt		not pertormed since and tests at	SIMUE AND		e for	odina.		9-010	ab Ahir	AMPICAL SUB-SIGIS FLOW MANATHONS	PALK AMK

			SOIL GAS PROBE		MEASUREMENTS	MENTS			4		(510) 836-	1111 Broadway, 6th Floor Oakland, California 94607 (510) 836-3034 Fax (510) 836-3036	, 6th Floor rnia 94607 836-3036
×	me: NEC	ی					0-d56 :0	203	2200	Sub-slab probe	tb probe	Soil gas probe	probe
Date: 9/3/12	AMIMA	MAINTIN VION CA	3	Project N	Number:	4	Mini Rae 2000 Serial No.):			Junto Man	Campillo	10.6) 11.7 eV
Weather: Const	SUND SUNDA	WILL VIEW				MDG 200	Lariatecti Gem 2000 Lariatiii Gas mete MDG 2002 Helium detector Serial No	andilli Gas Me	_	14			
Field Personnel:	15 and	that the	7			Tracer Gas:	Sas: Nelium		• 1				
Recorded By:	TMK					1						@	
② Surface Type: ☐ Asphalt 🔣 Concrete ☐ Grass	oe: □ Asphα	⊒# ⊠ Cor	ocrete 🔲 G	rass 🔲 Other	<u>@</u>	1 Casing Volume	(§)	Shut in test prior to pneumatic test completed.	r to pneumat	ic test comp		in. H ₂ O held for <u>60</u> seconds.	. seconds.
Surface Thickness	ess H	(2)	iche/centimeters	ters 🔲 Unknown		Sub-slab][@	Start of Pneumatic Test;	atic Test:	4.8			
(i.e., asphalt or concrete)	concrete)				Soil	Soil gas probe		Elapsed Time		Pump	۵	Wel	Well Head
(A) Initial Vacu	Initial Vacuum (prior to pumping)	(Buidmna	0.0	in. H ₂ O				(min.)	2	Flow Rate (LPM)	ate 1)	Ď,	Vacuum in. H ₂ O
(in the second s				[00		_		0.1		=	
	g bidirk reddi	(\hatau dd) filli	riela lubirig biank regaing (pprin _y) completea? Kares			11	1	7		0.2		2	
8 Shut in test	Shut in test prior to purging completed?	ing comple		Yes No 🗌				w		0.5		13	
	. - -	·							-				
Purging											Tracer Gas		VOC
Date	Start	End	Elapsed	Bag	Purge	Cumulative	CH ₄	00 80 80	0°8	Shroud (%)	(%) F	Samp	by PID
	2	2	(min.)	(1)	(LPM)	(1)	(2)	(2)	10/1	Min	Max	(circle one)	
83	6:11	8:23	5	11	.2	11	0.0	6.7	21.5	17	20	7	0.1
8/3	15:0	8:42	5	11	.2	2L	0.0	0.2	20.7	r to		Tanger Tanger	0.7
80	8.46	8:41	8	11	.2	36	0.0	0.2	4.00	15	20	1.2	ķ
				- N									
(10) Helium concentration in field screened samples is less than the shroud? X Yes \text{No}	ncentration it	n field scree	ened sample	s is less than	of minimum o	of minimum concentration in Note: 1% helium = 10,000 ppm,	(1) Shut	Shut in test prior to sample collection completed? Yes 🔯	sample colle	ction comp	leted? Yes	□ % ※	
(g) Sample Collection	lection												
Date	Time			Sample ID		Summa Canister ID	-	Flow Controller #	Vacuum Gauge #	# ebn	Inifial Vacuum (in. Hg)		Final Vacuum (in. Hg)
BISITE			SP-03	3		33402	202 09	ba	103/032	32	24.50		1
\$ 13/12	8:5	W.W.	\$5P-0-	8		37699	Ř	2022	103/032	32	29.20		4.15
str							_			1		-	
Comments:													
SWANDED	due tr	due to realt											

		S	OIL GA	SOIL GAS PROBE MEASUREMENTS	AEASURE!	MENTS					750 (012)	1111 Broadway, 6th Floor Oakland, California 94607 (510) 826, 2024	6th Floor nia 94607 836 2026
O Project Name: Date: 5 Note:	Name: NED	A FAIL	20	Project Ni	Project Number: NRWELA	2	Probe No.: Mini Rae 2000 Serial No.: Landtech GEM 2000 Landfill Gas Meter Serial MDG 2002 Helium detector Serial No.: Tracer Gas: M Helium	ondfill Cas Met	o: Man 2	N Substitution	X Sub-slab probe	Lamp Lamp Lamp Lamp Lamp Lamp Lamp Lamp	10) 230-3030
② Surface Type: 🗆 Asphalf 🕅 Concrete	oe: 🔲 Asphc	## KA Cor		Grass 🔲 Other	<u> </u>	1 Casing Volume	S S S	hut in test prik	or to pneumat	lic test com	pleted, PA	Shut in test prior to pneumatic test completed, \mathbf{PA} in. $\mathrm{H}_2\mathrm{O}$ held for	seconds.
Surface Thickness if	ess H	inc	inches/centimeters	eters 🔲 Unknown		Sub-slab <0.1 L		Start of Pneumatic Test:	natic Test:		梦		
(i.c., aspiral of	raspiral vacuum (prior to pumping)	(guldmnc		in. H ₂ O	5,	soli gas probe	[7]	Elapsed Time (min.)	ne	Pump Flow Rate (LPM)	gr Rate (M	Well Vac in.	Well Head Vacuum in. H ₂ O
(7) Field tubing	Field tubing blank reading (ppm,) completed?	(^wdd) bu	completed?	on 🔲 No	PID Reading	O.O ppm,				0.1	1 2		
8 Shut in test	Shut in test prior to purging completed?	ing comple		Yes No 🗍						0.5	40		
Purging											Tracer Gas		
Date	Start	End	Elapsed Time	Bag Volume	Purge Rate	Cumulative Volume	OH ₄ (%)	00 [%]	0 % %	Shroud (%)	(%) p	Sample (pm/mdd)	VOCs by PID (ppm _v)
1)/5/8	1530		((1)					I III		(פוספוס	
	1600	2 kg3	80	卫	23	آآ	*	1:0	21.5	14	160	0	1.9
	(MOC)	0/9/	Ċe	3	14.	R	• *	13	\$ 100	14	9	Jos pan	[
7	7)9)			2		w	9,0	5.	₹ -	2	9	225 Rm	.5
(10) Helium cor the shroud	centration in	i field scree	ened sample	Helium concentration in field screened samples is less than Mare shroud?	J 6	of minimum concentration in Note: 1% helium = 10,000 ppm,	(1) Shut	in test prior to	(1) Shut in test prior to sample collection completed? Yes 🕱	sction comp	oleted? Yes	□ °N ※	
(2) Sample Collection	llection												
Date	Time			Sample ID		Summa Canister ID	_	Flow Controller #	Vacuum Gauge #	# əbn	Initial Vacuum (in. Hg)	_	Final Vacuum (in. Hg)
2115	1001	1621/1628s	S-6-04	10		5 H3 2	00 NA	9	(50)501	4	29.(0)	C	93
uneva-su									100 De				
Comments: *	* MCKV TI		as disco			1							
W-201	phonuaho		t not no	tat not performed	SINCE TW	two thate at	THE SIME	Majaahed	Wicon	506-8V	20 Flow	SUB-State from undifferent	Z&

				SOIL GAS PROBE		MEASUREMENTS	MENTS				\neg	(510) 836	1111 Broadway, 6th Floor Oakland, California 94607 (510) 836-3034 Fax (510) 836-3036	ıy, 6th Floor omia 94607 0) 836-3036
	(1) Project Name:	me: NEC					Probe No.		25P-05		s-dus 🔀	X Sub-slab probe	Soil a	as probe
	Date: 3	AND 12			Project N	umber: went	Number; with 344 - 812 Mini Rae 2000 Serial No.:	2000 Serial	No.: No.	Chris			1 Jamp 1 7 11 7	/1176
_	Sile Location:	MACHINA	WM YEAR	3			Landtec	h GEM 2000	I≣	eter Serial No	75	LO WAY	Portonico	•
	Wegther:	SUMMU					70C 5/UN		MDG 2003 Halium datector Serial No.	. Met	١,	1		
			TWW.				100 P				1			
	Recorded By:	,	*				Iracer Gas:	sas: 🔼 Helium	lium 🗖 Other					
_														
_	② Surface Type: 🗌 Asphalt 🔀 Concrete	ce: Aspha	S	\Box	Grass 🔲 Other	<u>@</u>	1 Casing Volume	9	Shut in test prior to pneumatic test completed. Nam. H ₂ O held for	or to pneuma	tic test com	pleted, NA	In H ₂ O held f	or seconds.
	Surface Thickness	ess 4	in	inches/centimeters	sters 🔲 Unknown	nwo	Sub-slab][<u>@</u>	(6) Start of Pneumatic Test:	natic Test;	4Z			
_	(i.e., asphalt or concrete)	concrete)				Soi	Soil gas probe				Pump	 	Me	Well Head
	4 Initial Vacu	Initial Vacuum (prior to pumping)	(Bujumna)		in. H ₂ O				Elapsed Time (min.)	a	Flow Rate (∟PM)	Rate M)	. > :=	Vacuum in. H ₂ O
_	Elaki ti iking	i door daold	[maa, 50	Figure 1 many property and paid to be to b			0.0				0.1			
_			(^iiidd)		₫ 1		11				0.2	2		
	8 Shut in test	Shut in test prior to purging completed?	ing compl		Yes 🔀 No 🗌			ļ		1	0.5	52		
	(9) Puraina											Tracer Gas		
													П	VOCS
	Date	Start Time	End	Elapsed	Bag Volume	Purge Rate	Cumulative Volume	CH %	% % %	% ² 0	Shroud (%)	d (%)	Sampa (ppm da)	by PID
_				(min.)	(1)	(LPM)	(1)				Min	Max	(circle one)	(A) 110(d)
	8/3/12	1229	233	3.30	1		7	ଠ, ବ	0.0	28.2	8	F/2	4.5	3
	_	1242	4421	8:4	7		27	0	0	21.4	O	0	3150 Daus	7.
	→	1248	1252	4:00			36	1.7	9	20.9	12	LI	h'h	5
_														
	(10) Helium concentration in field screened samples is less than 5 the stroud?	ncentration in	field scre	ened sample	s is less than 5%	s of minimum o Note: 1% he	% of minimum concentration in Note: 1% helium = 10,000 ppm,	(I) Sh.	(1) Shut in test prior to sample collection completed? Yes \overrightarrow{K} No \square	sample colle	ection com	oleted? Yes	□ % *	
_	(12) Sample Collection	llection												
	Date	Time	_		Sample ID		Summa Canister ID	H	Flow Controller #	Vacuum Gauge #	# e6n1	Initial Vacuum (in. Hg)		Final Vacuum (in. Hg)
2	21/2/8			50-455	2		31111	Ga .	20192	10 3103	532	26 20		
at Silbert	8/3/12	1316/	14	50-155	7		33403	2	20209	(03 10	3.2	Bi.Y		2.26
word - spi		(323	3					_						
	Comments:	COMC OF	콱	in shaved	wed Aur	70	Sample was 10	10-14.	test for	He in So	Sammple.			
SGP me		Phenimakic	the to	st not o	15	Shi	TWO LEGITS AL	7 Jul 7	ife indian	ight below	Con	247-540	ent-state from	_
		Condition	TOP											

										Г		consultants	ants
			SOIL GAS PROBE		MEASUREMENTS	MENTS					(510) 836-	1111 Broadway, 6th Floor Oakland, California 94607 (510) 836-3034 Fax (510) 836-3036	, 6th Floor mia 94607 836-3036
① Project Name:	ome: NEC			g Z	umber WR64	344) On Serial	3	N229C	ls-dus 🗖 .	Sub-slab probe	Soil gas probe	probe
ation	۱ ۱	Mountain vi	view				Landtech GEM 2000 Landfill Gas Meter Serial No. M:	andfill Gas M	eter Serial No	7	SIEMUTION	1	\\ \(\) \(
Weather:	Sunny					MDG 20	MDG 2002 Helium detector Serial No.:	ector Serial N	O. MGPD	8	13		
Field Personnel:	el:	4 TWICE	7			Tracer Gas:	Sas: THelium	um Other	- 1				
Recorded By:		MEK				1							
② Surface Ty	Surface Type: 🗍 Asphalt		Concrete Grass	Grass Othe	<u>@</u>	1 Casing Volume	9	Shut in test pri	or to pneumo	tic test com	oleted M.	(S) Shut in test prior to pneumatic test competed for	seconds.
1			I			Sub-slab						4	
Surface Thickness	iness or concrete)	<u>.c</u>	inches/centimeters	eters 🔲 Unknown)		6 Start of Pneumatic Test:	natic Test:	也之			
					100	soli gas probe		Flansed Time	me	Pump	Q	Mell	Well Head
(A) Initial Vac	Initial Vacuum (prior to pumping)	, pumping)		in, H ₂ O				(min.))	Flow Rate (LPM)	Rate M)	Σ, Œ	Vacuum in. H ₂ O
9 Field tuthing	o blonk nego	ding from	Field Libina Dank reading loan Lampleted	Myor No	organigo v	0				0.1	*		
	DOLLAR BURNER	Sundal Sun	t combined	1	- 11		1			0.2	~!		
8 Shut in tes	Shut in test prior to purging completed?	ging comp	oleted? Yes 🔟	ON D					T	0.5			
Purging											Tracer Gas		
Date	Start	End	Elapsed	Bag	Purge	Cumulative	CH ₄	CO	05	Shroud (%)	(%) F	Sample	VOCS by PID
	2)	(min.)	(L)	(LPM)	(1)	(0/)	(%)	(%)	Min	Max	(circle ane)	(/wdd)
8312	13.25	13:57	r			1	0.0	3.5	17.7	12	91	3300	0,1
	14:01	14:00	L	_		2	0.0	3.5	4.71	13	51	10475	1.0
*	ानः ।	14 15	Ŋ			3	b.0	3.6	2.21	(3	91	6 500	6.0
Helium conc the shroud?	oncentration in field d? Yes 🔲 No	in field scre No	sened sample	Helium concentration in field screened samples is less than 5% the shroud? Yes \qquad \qquad \qquad \qquad \qquad \qquad \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	jo	of minimum concentration in Note: 1% helium = 10,000 ppm,	(1) Shut	(1) Shut in test prior to sample collection completed? Yes 🔽 No	sample coll	ection comp	oleted? Yes	9	
(a) Sample Collection	collection												
Date	Time	a)		Sample ID		Summa Canister ID	_	Flow Controller #	Vacuum Gauge #	# abno	Initial Vacuum (in. Hg)	_	Final Vacuum (in. Hg)
21/2/8	2 14 22/1030	OCD)	90-dss			23834	20	20284	(A) 2'4	表示	29.5	7	2,69
el alternario		+											
Ш	0.00	111		11		11	Ш			1			
Comments:	dumunand	7	H	PER TIMES	SING to	THIS TESTS OF	at the s	site indicate	2	HINGEN I	SUP SIGN	alp	
e athr	HOW WINDS	nati mark	2							5		vide and a second	

Appendix E Air Toxics Laboratory Report

8/24/2012
Ms. Jackie Lanzon
GeoSyntec Consultants
1111 Broadway
6th Floor
Oakland CA 94607

Project Name: NEC

Project #: WR0434A-8*12 Workorder #: 1208156AR1

Dear Ms. Jackie Lanzon

The following report includes the data for the above referenced project for sample(s) received on 8/7/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 SIM are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych

WORK ORDER #: 1208156AR1

Work Order Summary

CLIENT: Ms. Jackie Lanzon BILL TO: Ms. Jackie Lanzon

GeoSyntec Consultants GeoSyntec Consultants

1111 Broadway 1111 Broadway 6th Floor 6th Floor

Oakland, CA 94607 Oakland, CA 94607

PHONE: 510-836-3034 P.O. #

FAX: 510-836-3036 PROJECT # WR0434A-8*12 NEC

DATE RECEIVED: 08/07/2012 CONTACT: Kyle Vagadori

DATE COMPLETED: 08/23/2012

DATE REISSUED: 08/24/2012

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	OA-01	Modified TO-15 SIM	1.6 "Hg	5 psi
02A	IA-01	Modified TO-15 SIM	5.8 "Hg	5 psi
03A	IA-02	Modified TO-15 SIM	5.6 "Hg	5 psi
04A	IA-03	Modified TO-15 SIM	4.6 "Hg	5 psi
05A	IA-04	Modified TO-15 SIM	6.2 "Hg	5 psi
06A	IA-05	Modified TO-15 SIM	5.4 "Hg	5 psi
07A	IA-06	Modified TO-15 SIM	6.0 "Hg	5 psi
08A	1A-DUP-01	Modified TO-15 SIM	6.0 "Hg	5 psi
09A	Lab Blank	Modified TO-15 SIM	NA	NA
10A	CCV	Modified TO-15 SIM	NA	NA
11A	LCS	Modified TO-15 SIM	NA	NA
11 AA	LCSD	Modified TO-15 SIM	NA	NA

CERTIFIED BY: DATE: 08/24/12

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM GeoSyntec Consultants Workorder# 1208156AR1

Eight 6 Liter Summa Canister (SIM Certified) samples were received on August 07, 2012. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD
		For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. All The canisters used for this project have been certified to the Reporting Limit for the target analytes included in this workorder. Concentrations that are below the level at which the canister was certified may be false positives.

THE WORKORDER WAS REISSUED ON 8/24/12 TO REPORT RESULTS IN ug/m3 PER CLIENT REQUEST.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Client ID:	OA-01		
Lab ID:	1208156AR1-01A	Date/Time Analyzed:	8/22/12 07:04 PM
Date/Time Collecte	8/2/12 08:29 PM	Dilution Factor:	1.90
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msde.i / e082212sim

		MDL	ГОР	Rpt. Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ng/m3)
1,1-Dichloroethane	75-34-3	0.0089	0.023	0.15	Not Detected
1,1-Dichloroethene	75-35-4	0.014	0.023	0.075	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.010	0.023	0.15	0.028 J
Tetrachloroethene	127-18-4	0.016	0.038	0.26	0.11 J
trans-1,2-Dichloroethene	156-60-5	0.012	0.023	0.75	0.019 J
Trichloroethene	79-01-6	0.0055	0.030	0.20	1.1
Vinyl Chloride	75-01-4	0.0094	0.015	0.048	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	106
4-Bromofluorobenzene	460-00-4	70-130	93
Toluene-d8	2037-26-5	70-130	96

Client ID:	IA-01		
Lab ID:	1208156AR1-02A	Date/Time Analyzed:	8/22/12 08:00 PM
Date/Time Collecte	8/2/12 08:36 PM	Dilution Factor:	1.66
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msde.i / e082213sim

		MDL	ГОР	Rpt, Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ug/m3)
1,1-Dichloroethane	75-34-3	0.0078	0.020	0.13	Not Detected
1,1-Dichloroethene	75-35-4	0.012	0.020	990.0	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.0089	0.020	0.13	0.026 J
Tetrachloroethene	127-18-4	0.014	0.034	0.22	0.074 J
trans-1,2-Dichloroethene	156-60-5	0.010	0.020	99.0	0.022 J
Trichloroethene	79-01-6	0.0048	0.027	0.18	1.9
Vinyl Chloride	75-01-4	0.0082	0.013	0.042	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	109
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	94

Client ID:	IA-02		
Lab ID:	1208156AR1-03A	Date/Time Analyzed:	8/22/12 08:41 PM
Date/Time Collecte	8/2/12 08:33 PM	Dilution Factor:	1.65
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msde.i / e082214sim

		MDL	ПОБ	Rpt. Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ng/m3)
1,1-Dichloroethane	75-34-3	0.0077	0.020	0.13	Not Detected
1,1-Dichloroethene	75-35-4	0.012	0.020	0.065	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.0088	0.020	0.13	0.012 J
Tetrachloroethene	127-18-4	0.014	0.033	0.22	0.15 J
trans-1,2-Dichloroethene	156-60-5	0.010	0.020	0.65	0.030 J
Trichloroethene	79-01-6	0.0048	0.026	0.18	4.1
Vinyl Chloride	75-01-4	0.0081	0.013	0.042	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	110
4-Bromofluorobenzene	460-00-4	70-130	86
Toluene-d8	2037-26-5	70-130	94

Client ID:	IA-03		
Lab ID:	1208156AR1-04A	Date/Time Analyzed:	8/22/12 09:26 PM
Date/Time Collecte	8/2/12 08:34 PM	Dilution Factor:	1.58
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msde.i / e082215sim

		MDL	ГОР	Rpt, Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ug/m3)
1,1-Dichloroethane	75-34-3	0.0074	0.019	0.13	Not Detected
1,1-Dichloroethene	75-35-4	0.012	0.019	0.063	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.0084	0.019	0.12	Not Detected
Tetrachloroethene	127-18-4	0.013	0.032	0.21	0.17 J
trans-1,2-Dichloroethene	156-60-5	0.0097	0.019	0.63	0.021 J
Trichloroethene	79-01-6	0.0046	0.025	0.17	3.9
Vinyl Chloride	75-01-4	0.0078	0.012	0.040	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	112
4-Bromofluorobenzene	460-00-4	70-130	96
Toluene-d8	2037-26-5	70-130	96

Client ID:	IA-04		
Lab ID:	1208156AR1-05A	Date/Time Analyzed:	8/23/12 08:37 AM
Date/Time Collecte	8/2/12 08:35 PM	Dilution Factor:	1.69
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msde.i / e082221sim

		MDL	ПОБ	Rpt. Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ng/m3)
1,1-Dichloroethane	75-34-3	0.0079	0.020	0.14	Not Detected
1,1-Dichloroethene	75-35-4	0.012	0.020	0.067	0.050 J
cis-1,2-Dichloroethene	156-59-2	0.0000	0.020	0.13	0.020 J
Tetrachloroethene	127-18-4	0.014	0.034	0.23	0.14 J
trans-1,2-Dichloroethene	156-60-5	0.010	0.020	0.67	0.011 J
Trichloroethene	79-01-6	0.0049	0.027	0.18	3.7
Vinyl Chloride	75-01-4	0.0083	0.013	0.043	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	114
4-Bromofluorobenzene	460-00-4	70-130	86
Toluene-d8	2037-26-5	70-130	96

Client ID:	IA-05		
Lab ID:	1208156AR1-06A	Date/Time Analyzed:	8/23/12 06:33 AM
Date/Time Collecte	8/2/12 08:34 PM	Dilution Factor:	1.63
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msde.i / e082218sim

		MDL	ГОР	Rpt. Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ug/m3)
1,1-Dichloroethane	75-34-3	0.0076	0.020	0.13	Not Detected
1,1-Dichloroethene	75-35-4	0.012	0.019	0.065	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.0087	0.019	0.13	0.020 J
Tetrachloroethene	127-18-4	0.014	0.033	0.22	0.17 J
trans-1,2-Dichloroethene	156-60-5	0.010	0.019	0.65	0.028 J
Trichloroethene	79-01-6	0.0047	0.026	0.18	3.1
Vinyl Chloride	75-01-4	0.0080	0.012	0.042	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	113
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	95

Client ID:	1A-06		
Lab ID:	1208156AR1-07A	Date/Time Analyzed:	8/23/12 07:14 AM
Date/Time Collecte 8/2/12 07:45 PM	8/2/12 07:45 PM	Dilution Factor:	1.68
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msde.i / e082219sim

		MDL	ГОР	Rpt, Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ng/m3)
1,1-Dichloroethane	75-34-3	0.0079	0.020	0.14	Not Detected
1,1-Dichloroethene	75-35-4	0.012	0.020	0.067	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.0090	0.020	0.13	Not Detected
Tetrachloroethene	127-18-4	0.014	0.034	0.23	0.26
trans-1,2-Dichloroethene	156-60-5	0.010	0.020	0.67	0.030 J
Trichloroethene	79-01-6	0.0049	0.027	0.18	3.6
Vinyl Chloride	75-01-4	0.0083	0.013	0.043	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	113
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	95

Client ID:	1A-DUP-01		
Lab ID:	1208156AR1-08A	Date/Time Analyzed:	8/23/12 07:56 AM
Date/Time Collecte	8/2/12 08:34 PM	Dilution Factor:	1.68
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msde.i / e082220sim

		MDL	ГОР	Rpt. Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ng/m3)
1,1-Dichloroethane	75-34-3	0.0079	0.020	0.14	Not Detected
1,1-Dichloroethene	75-35-4	0.012	0.020	0.067	Not Detected
cis-1,2-Dichloroethene	156-59-2	0.0000	0.020	0.13	0.011 J
Tetrachloroethene	127-18-4	0.014	0.034	0.23	0.24
trans-1,2-Dichloroethene	156-60-5	0.010	0.020	0.67	0.013 J
Trichloroethene	79-01-6	0.0049	0.027	0.18	4.1
Vinyl Chloride	75-01-4	0.0083	0.013	0.043	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	111
4-Bromofluorobenzene	460-00-4	70-130	26
Toluene-d8	2037-26-5	70-130	94

Client ID:	Lab Blank		
Lab ID:	1208156AR1-09A	Date/Time Analyzed:	8/22/12 01:36 PM
Date/Time Collecte	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msde.i / e082206sima

		MDL	ГОР	Rpt. Limit	Amount
Compound	CAS#	(ng/m3)	(ng/m3)	(ng/m3)	(ug/m3)
1,1-Dichloroethane	75-34-3	0.0047	0.012	0.081	Not Detected
1,1-Dichloroethene	75-35-4	0.0073	0.012	0.040	0.011 J
cis-1,2-Dichloroethene	156-59-2	0.0054	0.012	0.079	0.026 J
Tetrachloroethene	127-18-4	0.0084	0.020	0.14	0.012 J
trans-1,2-Dichloroethene	156-60-5	0.0061	0.012	0.40	0.037 J
Trichloroethene	79-01-6	0.0029	0.016	0.11	0.043 J
Vinyl Chloride	75-01-4	0.0049	0.0077	0.026	Not Detected

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	108
4-Bromofluorobenzene	460-00-4	70-130	26
Toluene-d8	2037-26-5	70-130	86

Client ID:	CCV		
Lab ID:	1208156AR1-10A	Date/Time Analyzed:	8/22/12 10:13 AM
Date/Time Collecte	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msde.i / e082202sim

ballowano		
Compound	CAS#	
1,1-Dichloroethane	75-34-3	
1,1-Dichloroethene	75-35-4	
cis-1,2-Dichloroethene	156-59-2	
Tetrachloroethene	127-18-4	
trans-1,2-Dichloroethene	156-60-5	
Trichloroethene	79-01-6	
Vinyl Chloride	75-01-4	

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	107
4-Bromofluorobenzene	460-00-4	70-130	105
Toluene-d8	2037-26-5	70-130	104

Client ID:	CS		
Lab ID:	1208156AR1-11A	Date/Time Analyzed:	8/22/12 10:57 AM
Date/Time Collecte	NA - Not Applicable	Dilution Factor:	1,00
Media:	NA - Not Applicable	Instrument/Filename:	msde.i / e082203sim

		MDL	ГОР	
Compound	CAS#	(ng/m3)	(ng/m3)	
1,1-Dichloroethane	75-34-3		101	1
1,1-Dichloroethene	75-35-4		102	2
cis-1,2-Dichloroethene	156-59-2		102	2
Tetrachloroethene	127-18-4		85	10
trans-1,2-Dichloroethene	156-60-5		115	5
Trichloroethene	79-01-6		86	~
Vinyl Chloride	75-01-4		101	1

Surrogates	CAS#	Limits	%Recovery	
1,2-Dichloroethane-d4	17060-07-0	70-130	106	
4-Bromofluorobenzene	460-00-4	70-130	104	
Toluene-d8	2037-26-5	70-130	105	

 $^{^{\}ast}$ % Recovery is calculated using unrounded analytical results.

Cllent ID:	LCSD		
Lab ID:	1208156AR1-11AA	Date/Time Analyzed:	8/22/12 11:41 AM
Date/Time Collecte	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msde.i / e082204sim

		MDL	COD	
Compound	CAS#	(ng/m3)	(ng/m3)	
1,1-Dichloroethane	75-34-3)[100
1,1-Dichloroethene	75-35-4		1	102
cis-1,2-Dichloroethene	156-59-2		1	103
Tetrachloroethene	127-18-4		8	84
trans-1,2-Dichloroethene	156-60-5		_	114
Trichloroethene	79-01-6		6	98
Vinyl Chloride	75-01-4		10	100

Surrogates	CAS#	Limits	%Recovery	
1,2-Dichloroethane-d4	17060-07-0	70-130	105	
4-Bromofluorobenzene	460-00-4	70-130	103	
Toluene-d8	2037-26-5	70-130	104	

 $^{^{\}ast}$ % Recovery is calculated using unrounded analytical results.

8/18/2012
Ms. Jackie Lanzon
GeoSyntec Consultants
1111 Broadway
6th Floor
Oakland CA 94607

Project Name: NEC

Project #: WR0434A-8*12 Workorder #: 1208156B

Dear Ms. Jackie Lanzon

The following report includes the data for the above referenced project for sample(s) received on 8/7/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych

WORK ORDER #: 1208156B

Work Order Summary

CLIENT: Ms. Jackie Lanzon BILL TO: Ms. Jackie Lanzon

GeoSyntec Consultants GeoSyntec Consultants

1111 Broadway 1111 Broadway 6th Floor 6th Floor

Oakland, CA 94607 Oakland, CA 94607

PHONE: 510-836-3034 P.O. #

FAX: 510-836-3036 PROJECT # WR0434A-8*12 NEC

DATE RECEIVED: 08/07/2012 **CONTACT:** Kyle Vagadori **DATE COMPLETED:** 08/18/2012

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
09A	SSP-01	Modified TO-15	2.2 "Hg	5 psi
10A	SSP-02	Modified TO-15	0.0 "Hg	5 psi
11A	SSP-03	Modified TO-15	3.6 "Hg	5 psi
12A	SSP-04	Modified TO-15	1.2 "Hg	5 psi
13A	SSP-05	Modified TO-15	1.8 "Hg	5 psi
14A	SSP-06	Modified TO-15	2.2 "Hg	5 psi
15A	SSP-DUP-01	Modified TO-15	2.0 "Hg	5 psi
16A	Lab Blank	Modified TO-15	NA	NA
17A	CCV	Modified TO-15	NA	NA
18A	LCS	Modified TO-15	NA	NA
18AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY: DATE: 08/18/12

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012. Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE EPA Method TO-15 GeoSyntec Consultants Workorder# 1208156B

Seven 1 Liter Summa Canister samples were received on August 07, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

Despite the use of flow controllers for sample collection, the final canister vacuums for sample SSP-02 were measured at ambient pressure in the field. These ambient pressure readings were confirmed by the laboratory upon sample receipt.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Compound

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Lab ID#: 1208156B-09A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.72	0.94	3.9	5.1
Client Sample ID: SSP-02				
Lab ID#: 1208156B-10A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.67	9.0	3.6	48
Tetrachloroethene	0.67	1.2	4.5	8.0
Client Sample ID: SSP-03				
Lab ID#: 1208156B-11A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.76	7.0	4.1	38
Tetrachloroethene	0.76	1.1	5.2	7.4
Client Sample ID: SSP-04				
Lab ID#: 1208156B-12A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.70	1.7	3.8	9.3
Client Sample ID: SSP-05				
Lab ID#: 1208156B-13A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.71	1.5	3.8	7.8
Client Sample ID: SSP-06				
Lab ID#: 1208156B-14A				
	Rpt. Limit	Amount	Rpt. Limit	Amount
•	,	/ 1 \	/ / 🗥	, , .,

(ppbv)

(ppbv)

(ug/m3)

(ug/m3)

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SSP-06 Lab ID#: 1208156B-14A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	0.97	360	5.2	1900
Tetrachloroethene	0.97	40	6.6	270

Client Sample ID: SSP-DUP-01

Lab ID#: 1208156B-15A

2	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	0.72	10	3.9	55
Tetrachloroethene	0.72	1.5	4.9	10

Client Sample ID: SSP-01 Lab ID#: 1208156B-09A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080929	Date of Collection: 8/3/12 10:31:00 AM
Dil. Factor:	1.45	Date of Analysis: 8/10/12 09:45 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.72	Not Detected	1.8	Not Detected
1,1-Dichloroethene	0.72	Not Detected	2.9	Not Detected
trans-1,2-Dichloroethene	0.72	Not Detected	2.9	Not Detected
1,1-Dichloroethane	0.72	Not Detected	2.9	Not Detected
cis-1,2-Dichloroethene	0.72	Not Detected	2.9	Not Detected
Trichloroethene	0.72	0.94	3.9	5.1
Tetrachloroethene	0.72	Not Detected	4.9	Not Detected

.,,,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	110	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	114	70-130

Client Sample ID: SSP-02 Lab ID#: 1208156B-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080930	Date of Collection: 8/5/12 2:16:00 PM
Dil. Factor:	1.34	Date of Analysis: 8/10/12 10:23 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.67	Not Detected	1.7	Not Detected
1,1-Dichloroethene	0.67	Not Detected	2.6	Not Detected
trans-1,2-Dichloroethene	0.67	Not Detected	2.6	Not Detected
1,1-Dichloroethane	0.67	Not Detected	2.7	Not Detected
cis-1,2-Dichloroethene	0.67	Not Detected	2.6	Not Detected
Trichloroethene	0.67	9.0	3.6	48
Tetrachloroethene	0.67	1.2	4.5	8.0

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	106	70-130	

Client Sample ID: SSP-03 Lab ID#: 1208156B-11A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080931	Date of Collection: 8/3/12 9:02:00 AM
Dil. Factor:	1.52	Date of Analysis: 8/10/12 11:00 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.76	Not Detected	1.9	Not Detected
1,1-Dichloroethene	0.76	Not Detected	3.0	Not Detected
trans-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.76	Not Detected	3.1	Not Detected
cis-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
Trichloroethene	0.76	7.0	4.1	38
Tetrachloroethene	0.76	1.1	5.2	7.4

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	114	70-130	

Client Sample ID: SSP-04 Lab ID#: 1208156B-12A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080934	Date of Collection: 8/5/12 4:28:00 PM
Dil. Factor:	1.40	Date of Analysis: 8/10/12 12:53 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.70	Not Detected	1.8	Not Detected
1,1-Dichloroethene	0.70	Not Detected	2.8	Not Detected
trans-1,2-Dichloroethene	0.70	Not Detected	2.8	Not Detected
1,1-Dichloroethane	0.70	Not Detected	2.8	Not Detected
cis-1,2-Dichloroethene	0.70	Not Detected	2.8	Not Detected
Trichloroethene	0.70	1.7	3.8	9.3
Tetrachloroethene	0.70	Not Detected	4.7	Not Detected

		Metriou	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	110	70-130	

Client Sample ID: SSP-05 Lab ID#: 1208156B-13A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080932	Date of Collection: 8/3/12 1:23:00 PM
Dil. Factor:	1.42	Date of Analysis: 8/10/12 11:50 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.71	Not Detected	1.8	Not Detected
1,1-Dichloroethene	0.71	Not Detected	2.8	Not Detected
trans-1,2-Dichloroethene	0.71	Not Detected	2.8	Not Detected
1,1-Dichloroethane	0.71	Not Detected	2.9	Not Detected
cis-1,2-Dichloroethene	0.71	Not Detected	2.8	Not Detected
Trichloroethene	0.71	1.5	3.8	7.8
Tetrachloroethene	0.71	Not Detected	4.8	Not Detected

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	117	70-130

Client Sample ID: SSP-06 Lab ID#: 1208156B-14A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080936	Date of Collection: 8/3/12 2:30:00 PM
Dil. Factor:	1.94	Date of Analysis: 8/10/12 02:39 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.97	Not Detected	2.5	Not Detected
1,1-Dichloroethene	0.97	Not Detected	3.8	Not Detected
trans-1,2-Dichloroethene	0.97	Not Detected	3.8	Not Detected
1,1-Dichloroethane	0.97	Not Detected	3.9	Not Detected
cis-1,2-Dichloroethene	0.97	Not Detected	3.8	Not Detected
Trichloroethene	0.97	360	5.2	1900
Tetrachloroethene	0.97	40	6.6	270

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	111	70-130	

Client Sample ID: SSP-DUP-01 Lab ID#: 1208156B-15A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080933	Date of Collection: NA
Dil. Factor:	1.44	Date of Collection: NA Date of Analysis: 8/10/12 12:16 PM
-		-

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.72	Not Detected	1.8	Not Detected
1,1-Dichloroethene	0.72	Not Detected	2.8	Not Detected
trans-1,2-Dichloroethene	0.72	Not Detected	2.8	Not Detected
1,1-Dichloroethane	0.72	Not Detected	2.9	Not Detected
cis-1,2-Dichloroethene	0.72	Not Detected	2.8	Not Detected
Trichloroethene	0.72	10	3.9	55
Tetrachloroethene	0.72	1.5	4.9	10

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: Lab Blank Lab ID#: 1208156B-16A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080922		e of Collection: NA	
Dil. Factor:	1.00	Dat	e of Analysis: 8/9/12	08:51 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

<i>j.</i>		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	90	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: CCV Lab ID#: 1208156B-17A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080917	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/9/12 05:48 PM

Compound	%Recovery
Vinyl Chloride	78
1,1-Dichloroethene	84
trans-1,2-Dichloroethene	93
1,1-Dichloroethane	83
cis-1,2-Dichloroethene	86
Trichloroethene	89
Tetrachloroethene	100

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	114	70-130	

Client Sample ID: LCS Lab ID#: 1208156B-18A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080918	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/9/12 06:24 PM

Compound	%Recovery
Vinyl Chloride	83
1,1-Dichloroethene	94
trans-1,2-Dichloroethene	105
1,1-Dichloroethane	86
cis-1,2-Dichloroethene	87
Trichloroethene	93
Tetrachloroethene	101

, per 1		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	114	70-130	

Client Sample ID: LCSD Lab ID#: 1208156B-18AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p080919	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/9/12 06:51 PM

Compound	%Recovery
Vinyl Chloride	84
1,1-Dichloroethene	91
trans-1,2-Dichloroethene	107
1,1-Dichloroethane	84
cis-1,2-Dichloroethene	89
Trichloroethene	90
Tetrachloroethene	103

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	116	70-130

8/15/2012
Ms. Jackie Lanzon
GeoSyntec Consultants
1111 Broadway
6th Floor
Oakland CA 94607

Project Name: NEC

Project #: WR0434A-8*12 Workorder #: 1208156C

Dear Ms. Jackie Lanzon

The following report includes the data for the above referenced project for sample(s) received on 8/7/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych

WORK ORDER #: 1208156C

Work Order Summary

CLIENT: Ms. Jackie Lanzon BILL TO: Ms. Jackie Lanzon

GeoSyntec Consultants GeoSyntec Consultants

1111 Broadway 1111 Broadway 6th Floor 6th Floor

Oakland, CA 94607 Oakland, CA 94607

PHONE: 510-836-3034 P.O. #

FAX: 510-836-3036 PROJECT # WR0434A-8*12 NEC

DATE RECEIVED: 08/07/2012 CONTACT: Kyle Vagadori DATE COMPLETED: 08/15/2012

RECEIPT **FINAL** FRACTION # NAME TEST VAC./PRES. **PRESSURE** 10A SSP-02 Modified ASTM D-1946 0.0 "Hg 5 psi 13A SSP-05 Modified ASTM D-1946 1.8 "Hg 5 psi

2.0 "Hg 15A SSP-DUP-01 Modified ASTM D-1946 5 psi NA 16A Lab Blank Modified ASTM D-1946 NA Modified ASTM D-1946 17A NA NA LCS 17AA **LCSD** Modified ASTM D-1946 NA NA

CERTIFIED BY: DATE: 08/15/12

Technical Director

Certfication numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012.

Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified ASTM D-1946 GeoSyntec Consultants Workorder# 1208156C

Three 1 Liter Summa Canister samples were received on August 07, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Helium gas in air using GC/TCD. The method involves direct injection of 1.0 mL of sample.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

Despite the use of flow controllers for sample collection, the final canister vacuums for sample SSP-02 were measured at ambient pressure in the field. These ambient pressure readings were confirmed by the laboratory upon sample receipt.

OR Per client instructions, the analysis was cancelled.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: SSP-02 Lab ID#: 1208156C-10A

	Rpt. Limit	Amount
Compound	(%)	(%)
Helium	0.067	0.097

Client Sample ID: SSP-05 Lab ID#: 1208156C-13A

	Rpt. Limit	Amount
Compound	(%)	(%)
Helium	0.071	3.0

Client Sample ID: SSP-DUP-01

Lab ID#: 1208156C-15A

	Rpt. Limit	Amount
Compound	(%)	(%)
Helium	0.072	0.22

Client Sample ID: SSP-02 Lab ID#: 1208156C-10A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9080913b 1.34		etion: 8/5/12 2:16:00 PM sis: 8/9/12 02:16 PM
		Rpt. Limit	Amount
Compound		(%)	(%)
Helium		0.067	0.097

Client Sample ID: SSP-05 Lab ID#: 1208156C-13A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9080914b	Date of Collec	etion: 8/3/12 1:23:00 PM
Dil. Factor:	1.42	Date of Analysis: 8/9/12 02:50 PM	
		Rpt. Limit	Amount
Compound		(%)	(%)

0.071

3.0

Container Type: 1 Liter Summa Canister

Helium

Client Sample ID: SSP-DUP-01 Lab ID#: 1208156C-15A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9080915b 1.44	Date of Collect Date of Analys	tion: NA sis: 8/9/12 03:22 PM
		Rpt. Limit	Amount
Compound		(%)	(%)
Helium		0.072	0.22

Client Sample ID: Lab Blank Lab ID#: 1208156C-16A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9080903b 1.00	Date of Colle Date of Analy	ction: NA /sis: 8/9/12 08:13 AM
		Rpt. Limit	Amount
Compound		(%)	(%)
Helium		0.050	Not Detected

Client Sample ID: LCS Lab ID#: 1208156C-17A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9080902b Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/9/12 07:46 AM

Compound %Recovery

Helium 99

Client Sample ID: LCSD Lab ID#: 1208156C-17AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9080925b Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 8/9/12 08:59 PM

Compound %Recovery

Helium 100

Appendix F Soil Vapor Extraction System Construction Drawings

SOIL VAPOR EXTRACTION SYSTEM CONSTRUCTION DRAWINGS

501 ELLIS STREET MOUNTAIN VIEW, CALIFORNIA

DECEMBER 2012

LIST OF DRAWINGS

DRAWING TITLE

SHEET NO.

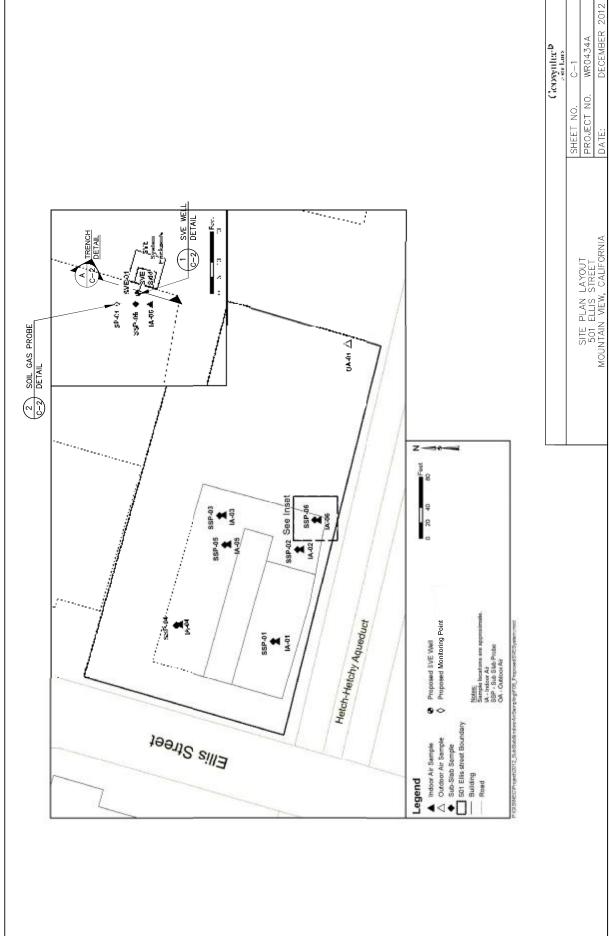
SITE PLAN LAYOUT C-2 5

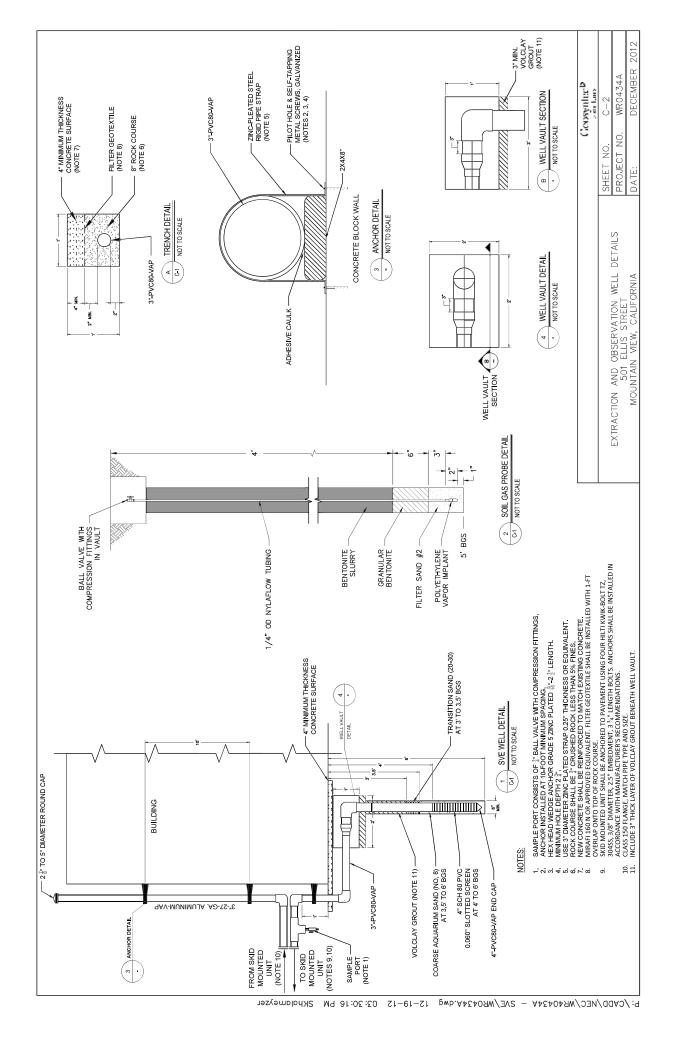
PROCESS FLOW DIAGRAM

EXTRACTION AND OBSERVATION WELL DETAILS

PREPARED FOR:

RENESAS ELECTRONICS AMERICA, INC. 2880 SCOTT BLVD, M/S SC3300 SANTA CLARA, CA 95050


Geosyntec PREPARED BY:


1111 BROADWAY STREET, SUITE 600 OAKLAND, CALIFORNIA 94607, USA PHONE: 510.836.3034

TITE SHEET 501 ELLIS STREET MOUNTAIN VIEW, CALIFORNIA

DECEMBER 2012 WR0434A SHEET NO.
PROJECT NO.
DATE:

Geosyntec^b

